Lecture 29
Section outline
-
December 6th, Friday (08:30-10:30)
Undecidability
- Universal TM \( U \)
- \( L_u \) is in RE
- \( L_u \) is not in REC (\(L_d \leq_m \overline{L_u}\))
- Halting problem for a TM on a given input
Exercises
- Let \( G \) be the CFG with productions \(S \rightarrow AC\), \(A \rightarrow BA \; | \; a\), \(B \rightarrow b\), \(C \rightarrow BC \; | \; c\). Apply the CYK agorithm to the string \( w = bbabbbc \) (exercise from final exam of June 28th, 2019)
- Let \( \Sigma = \{a,b\} \). State whether the following languages are regular
(first three questions are from final exam of June 28th, 2019)
- \(L_1 = \{ bbxbbx^R \; | \; x \in \Sigma^\ast \}\)
- \(L_2 = \{ bbx \; | \; x \in \Sigma^\ast \} \cdot \{ bbx^R | x \in \Sigma^\ast \} \)
- \( L_3 = \{ bbx \; | \; x \in \Sigma^\ast \} \cdot L_1 \cdot \{ bbx^R \; | \; x \in \Sigma^\ast \}\)
- \( L_4 = \{ x \; | \; x \in \Sigma^\ast \} \cdot \{ xx^R \; | \; x \in \Sigma^\ast \} \cdot \{ x^R \; | \; x \in \Sigma^\ast \}\)
References
- Hopcroft et al., chapter 9