Lecture 29
Section outline
-
December 15th, Friday (12:30-14:30)
Undecidability
- Notion of reduction between two decision problems
- Properties of reduction
- Definition of languages \( L_{e} \) and \( L_{ne} \)
- \( L_{ne} \) is in RE
Exercises
- Let \( \Sigma = \{a,b\} \). State whether the following languages are regular
(first three questions are from final exam of June 28th, 2019)
- \(L_1 = \{ bbxbbx^R \; | \; x \in \Sigma^\ast \}\)
- \(L_2 = \{ bbx \; | \; x \in \Sigma^\ast \} \cdot \{ bbx^R | x \in \Sigma^\ast \} \)
- \( L_3 = \{ bbx \; | \; x \in \Sigma^\ast \} \cdot L_1 \cdot \{ bbx^R \; | \; x \in \Sigma^\ast \}\)
- \( L_4 = \{ x \; | \; x \in \Sigma^\ast \} \cdot \{ xx^R \; | \; x \in \Sigma^\ast \} \cdot \{ x^R \; | \; x \in \Sigma^\ast \}\)
References
- Hopcroft et al., chapter 9