Solvers for

Mathematical
Programming

" S
Solvers (optimizing engines)

A solver is a software application that takes the description of an

optimization problem as input and provides the solution of the
model (and related information) as output.

Tables, graphs,
Mathematical N N numbers!
model ~ 7
~ - 7’
Model
Data [r— _> SOLVER (SW) ﬁ — * SOIUtiOnS

T l

Optimization)
P Problem solutions
problem

Luigi De Giovanni - Solvers 2.2

" A
MILP solvers

m Mixed Integer Linear Programming solvers most used
In practice:

very efficient
numerical stability
easy to use or embed

m more than 1 000 000 000 speed-up in the last 20 years
hardware speed-up: x 1000
simplex improvements: x 1000
branch-and-cut improvement: x 1000

m Cplex, Gurobi, Xpress, Scip, Lindo, GLPK, Google OR Tools etc.

Luigi De Giovanni - Solvers 2.3

= N
Solver interfaces

A solver can be accessed via modelling languages or general-
purpose-language libraries

Solver interface

t Tables, graphs,
Mathematical Data numbers!
model structures
Model
Data t)
solutions
Solver

Optimization)
P Problem solutions
problem

Luigi De Giovanni - Solvers 2.4

" A
IBM llog Cplex

®m One of the first MILP solvers

® Includes state-of-the-art technology

m One of the best solvers available (Gurobi, Xpress)
m Possible interfaces

Interactive optimizer

OPL / AMPL / ZIMPL ... algebraic modelling language
C — APl libraries (Callable libraries)

C++ libraries (Concert technologies)

Python APlIs

Python (with DOcplex) / Java / .Net wrapper libraries
Matlab / Excel plugins

Luigi De Giovanni - Solvers

2.5

"
Accessing / Getting IBM llog Cplex

m Installed at LabTA/LabP140 and virtual Lab24hr

B From home

Getting your own free academic license (!)
Virtual Lab24hr

Accessing via ssh / X-windows (or similar)
Accessing Cplex via ssh

m See Getting access to Lab resources: instructions for
details!

Luigi De Giovanni - Solvers 2.6

" A
DOcplex — a Python interface to Cplex

IBM Decision Optimization CPLEX Modeling for Python

Built upon the Cplex Python APIs

Exploits Python syntax to provide “easy” and flexible encoding
of the mathematical model notation, e.g.:

Dictionaries for sets of variables
for..in..if.. to encode “forall” quantifiers or sum indices

Ideal for prototyping and integration into “modern” applications

Documentation: docplex landing pages
https://pypi.org/project/docplex/
https://ibmdecisionoptimization.github.io/docplex-doc/

= @Getting started with DOcplex
« Mathematical Programming Modeling for Python using docplex.mp

Installation, e.g.

> pip install docplex or
> conda install -c ibmdecisionoptimization docplex

Luigi De Giovanni - Solvers 2.7

=
Basic commands

m To enable Cplex Studio at Lab: use Linux, run
> . cplex_env (notice “dot blank”)

m Use DOcplex with your favourite development environment
for python. At Lab, we have

visual studio code IDE
jupyter notebook
gedit + terminal

... or use any other developing tool you like

B Importing docplex mathematical programming library

m Full reference: https://ibmdecisionoptimization.github.io
/docplex-doc/mp/docplex.mp.model . html

Luigi De Giovanni - Solvers 2.8

" A
DOcplex basic functions: model definition

m Creating an “empty” model

m Defining a variable

optional arguments

default values: , etc. ;

m Expressions (functions of decision and/or usual variables)

B Creating a constraint
[or or]

m Creating the objective function
[or]

Luigi De Giovanni - Solvers 2.9

" A
DOcplex basic functions: model use

m Solving the model

optional arguments
True|False

m Checking status of the solution (optimal, infeasible, unbounded ...):
None

m Printing the solution:
None

#standard info (status, o.f. and vars’ value)

##tvalue of one variable

#value of the objective function

Luigi De Giovanni - Solvers 210

" A
DOcplex basic functions: export and debug

m Exporting the model in a text file (e.g., LP format)

#default None (use model name)
False

m Exporting the solution in json format:

m Exporting the solution in a string:

Resources: example farmer.py

Exercise: implement the «diet», the «perfumes» etc. models
[example *.py]

Luigi De Giovanni - Solvers 2.11

" A
Generalizing the model: data

m Sets: use, e.g., list, range ...

m Parameters: use, e.g., (multidim) list, dictionary ...

Luigi De Giovanni - Solvers 212

" A
Generalizing the model: decision variables

m Variables may be indexed over one or more sets
m Use for .. in .. if .. toencode “forall” quantifiers

m Use, e.g., a dictionary having a tuple from the interested sets as
index and decision variables as elements

m Use, e.g., alist (accessed by position, starts from 0)

Luigi De Giovanni - Solvers 213

" A
Generalizing: expressions and constraints

m Expressions may contain indexed sum
m Usem.sumand for .. in .. if .. toencode sum indices

m Indexed constraints: use loops to encode “forall” quantifiers
#forall i in I such that i is capacitaded

Resources: prodmix . py

Exercise: implement the «perfumes» and the «young money maker» models
using the general prodmix.py model [prodmix.py]

Luigi De Giovanni - Solvers 214

"
Reporting the example to be implemented
One possible modeling schema: optimal production mix

@ set /: resources | = {rose, lily, violet }
e set J: products J = {one, two}
@ parameters D;: availability of resource i € [e.g. Diose = 27
@ parameters Pj: unit profit for product j € J e.g. Pone = 130
@ parameters Q;: amount of resource / € /| required for each unit of
product j € J €.g. (rose one = 1.5, Qlfly two — 1
@ variables x;: amount of product j € J Xoner Xtwo
max Z Pix;
Jjed
s.t. ZQUXJ < D; V 1€l
JjeJ
xieRy [Z4 | {0,1}] V jeJ

Luigi De Giovanni - Solvers 215

"
Reporting the example to be implemented
Example

A perfume firm produces two new items by mixing three essences: rose,
lily and violet. For each decaliter of perfume one, it is necessary to use 1.5
liters of rose, 1 liter of lily and 0.3 liters of violet. For each decaliter of
perfume two, it is necessary to use 1 liter of rose, 1 liter of lily and 0.5
liters of violet. 27, 21 and 9 liters of rose, lily and violet (respectively) are
available in stock. The company makes a profit of 130 euros for each
decaliter of perfume one sold, and a profit of 100 euros for each decaliter
of perfume two sold. The problem is to determine the optimal amount of
the two perfumes that should be produced.

max 130 x.pe + 100 Xtpo objective function
s.t. 15xppe + Xivo <27 availability of rose
Xone Xtwo <21 availability of lily
03%Xone + 05xm0 < 9 availability of violet
Xope - Ximo > 0 domains of the variables

Luigi De Giovanni - Solvers 216

" A
Generalizing the model: DOcplex shortcuts

m Indexed variables:

None

None

m Indexed constraints:

Resources: mincostcover.py

Exercise: solve the «emergency location» problem using
mincostcover.py

Luigi De Giovanni - Solvers 217

" J
Reporting the example to be implemented
One possible modeling schema: minimum cost covering

set [: resources | ={V.M, F}

set J: requests J = {proteins, iron, calcium}

parameters C;: unit cost of resource i € /
parameters R;: requested amount of j € J

parameters A;;: amount of request j € J satisfied by one unit of
resource | € |

variables x;: amount of resource / € [

min E C,'X,'
S.

t.
> Ajxi = R; VjeJ
i€l
XjER_|_[Z+|{O,1}] Viel

Luigi De Giovanni - Solvers

218

"
Reporting the example to be implemented
The diet problem

min 4 xy
s.t. bxy
6 xy

5 xy

Xy

|
|
|
|

9

10 xpm
15 XM
10 xpm
3 xm
XM

+ 4+ + +

Y

1 xXF
4XF
5xF

12 xg

XF

Emergency location: MILP

min x3 +
S.tL.
X1+
X1+

X1

X2

X2
X2

X2

X2

+ X3

X3
X3

X3

Luigi De Giovanni - Solvers

|

+

X4

X4
Xa
Xa

X3

|

+ + +

VIV IV IV

20
30
10

cost

proteins

iIron

calcium

domains of the variables

model from covering schema

X5

X5
X5
X5

X5

+ Xe

X6

X6
X6

Xo

VIV IVIVIV IV

Mm

cover zone 1
cover zone 2
cover zone 3
cover zone 4
cover zone b
cover zone 6

e

()
()
()
()
()
()

{0,1} (domain)

2.19

" J
Generalizing: separating model and data file
m Data (sets and parameters) can be read from an

external source: a plain text file, a json file, a database,
a spreadsheet etc.

m Model and data can live in separate domains (e.g.,
with differentiated access policy)

m Take advantage from available Python libraries (json,
pandas etc. etc.)

Resources: prodmix.ext.py (read datafrom json file)
farmer. json

Exercise: solve the «perfumes» problem by only modifying the json file

Luigi De Giovanni - Solvers 2.20

" A
Exercise

Solve the following problem:

We produce bottles of three types of wines (winel, wine2 and
wine3) using four types of grapes (grapel, grape2, grape3 and
graped). The unit profit per bottle of wine of the three types is
respectively 21, 15 and 10 euros. The availability of grapes is
respectively 100, 200, 50 and 150 units. A bottle of winel
requires 1.5, 0.8, 1.0 and 0.3 units of grapes 1, 2, 3 and 4
respectively. A bottle of wine2 requires 1.0, 2.0, 0.5 and 1.1 units
of grapes 1, 2, 3 and 4 respectively. A bottle of wine3 requires
1.7, 2.4 and 1.6 units of grapes 1, 2 and 4 respectively (and no
grape3). Determine the production mix to maximize the profit.

[use wines.json withpridmix.ext.py]

Luigi De Giovanni - Solvers 2.21

" A
Applications

m Transportation model
Basic model [transport basic.py , transport basic.json]

Remove expensive (over a parametrized threshold) links

Additional constraint 1: if the cost of link from i toj is at most LowCost, then
the flow on this link should be at least LowCostMinOnLink

Additional constraint 2: destination SpecialDestination should receive at least
MinToSpecialDest units from each origin, but for origin SpecialOrigin

Additional constraint 3: at least a SignificantNumber of origins significantly (no
less than a SignificantFraction of the destination demand) supply each
destination [transport dict.py , transport plus.json]

m Facility location with fixed costs

Preprocess data to define data-dependent big-M constants
[facility loc _basic.py]

Additional constraint: at most/least max/min number of open locations
[facility loc plus.py]

Luigi De Giovanni - Solvers 2.22

" A
Reporting the example to be implemented
One possible modeling schema: transportation

@ set /: origins factories | = {A, B, C}

@ set J: destinations stores J = {1,2,3,4}
@ parameters O;: capacity of origin / € / factory production
@ parameters D;: request of destination j € J store request

@ parameters Cj;: unit transp. cost from origin i € / to destination j € J

@ variables x;;: amount to be transported from /e /toj € J

min ZZCUXU
icl jeJ
S.t.
ZX,'J'EDJ; vVjed
icl
> X < 0; Viel
JjeJ
xj € Ry [Z4 | {0,1}] VieljelJ

Luigi De Giovanni - Solvers 2.23

Reporting the example to be implemented
Modeling fixed costs: binary/boolean variables (linear)
@ set /: potential locations

@ parameters W, F;, G, R;, “large-enough” M (e.g. M = argmax;c;{W/C})
@ variables x;: size (in 100 m?) of the store in j € /

@ variables y;: taking value 1 if a store is opened in i € | (x; > 0), 0 otherwise

icl
s.t
Z Cixi+Fyi<W budget
icl
xi <My Viel BigM constraint / relate x; to y;
Z_)/i <K max number of stores
iel

xi€e Ry, yie{0,1} Viel

Luigi De Giovanni - Solvers 2.24

" A
Lab organization: DOcplex, Cplex C APIs or what?

The course unit presents DOcplex and the Cplex C APIs (Callable Libraries) as tools for
Lab Exercise Part | (implementation of a mathematical programming model)

Other tools may be used (Cplex Concert Technologies or OPL or Matlab connector or
AMPL or Gurobi APIs etc.), to be discussed and agreed with the teacher

Follow the table to determine your tool! Next Lab classes will concern Cplex APIs or
DOcplex or (assisted self-)learning agreed alternative tools (see proposed exercises)

Master Can&want Can&want

DEiee Cor Ci+ St priority 1 priority 2 priority 3
Computer Yes Yes/No Cplex C APIs

Science No Yes Cplex CAPIs DOcplex (with lists)

No No Cplex CAPIs DOcplex (with lists) ' agreed*

Yes Yes C APIs or DOcplex (your choice) agreed
Others Yes No Cplex C APIs agreed

No Yes DOcplex agreed

No No agreed

using C APIs is appreciated! *after convincing the teacher!

Luigi De Giovanni - Solvers 2.25

" A
Cplex Callable Libraries

m C AP| towards LP/QP/MIP/MIQP algorithms
m Basic objects: Environment and Problem
m Environment: license, optimization parameters ...

B Problem: contains problem information: variables,
constraints ...)

m (at least one) environment and problem must be
created

CPXENVptr CPXopenCPLEX / CPXcloseCPLEX

CPXLPptr CPXcreateprob / CPXfreeprob

Luigi De Giovanni - Solvers 2.26

" N

Cplex API functions

m The two objects can be accessed (e.g. to add
variables or constraints, or to solve a problem) via
the functions provided by the API

m (Almost) all the API functions can be called as

int CPXfuncName (environment[,problem], ...

) ;
Error code (0=0k) Basic objects
CPXgeterrorstring returns a

description of the error

Resources: cpxmacro.h

Luigi De Giovanni - Solvers 2.27

"
Sparse matrix representation

B Sparse matrix: many zero entries

m Compact representation:
1 Explicit representation of “nonzeroes”
1 Linearization into indexes (idx) and values (val) vectors
1 A third vector to indicate where rows begins (beg) cpp]

int*beg [, | [

int* idx |
double* val |

Resources: addrow.xls, first.cpp

Luigi De Giovanni - Solvers 2.28

"
Proposed exercises

® Implement the mathematical models for

the “Moving scaffolds between yards” problem

[Resources: moving scaffolds.
moving scaffolds.

the “Four Italian friends” problem

[Resources: italianFriendsJSP.
italianFriendsJSPwithVarMaps.
italianFriendsJSP.

The “TLC-antennas location” problem

[Resources: antennas.
antennas.

Luigi De Giovanni - Solvers

cpp
py]

cpp
cpp
py]

cpp
py]

2.29

"
Reporting the example to be implemented
Moving scaffolds between construction yards: MILP model

[Suggestion: compose transportation and fixed cost schemas]

min Z Cijxij+ F Z yvi+(L—F)z

icljed icljcJd
s.t. ZXU > Rj vV jeJ
iel
ZX,'J; < D; vV 1€l
jed
xiji < Kyj vV 1el,jed
Z vi < N+z
iceljed
yaz+yg2 < 1
Xj € Ly VvV ieljel
yi € {0,1} V¥V iel,jeJ
z € {0,1}

Luigi De Giovanni - Solvers 2.30

	Slide 1: Solvers for Mathematical Programming
	Slide 2: Solvers (optimizing engines)
	Slide 3: MILP solvers
	Slide 4: Solver interfaces
	Slide 5: IBM Ilog Cplex
	Slide 6: Accessing / Getting IBM Ilog Cplex
	Slide 7: DOcplex – a Python interface to Cplex
	Slide 8: Basic commands
	Slide 9: DOcplex basic functions: model definition
	Slide 10: DOcplex basic functions: model use
	Slide 11: DOcplex basic functions: export and debug
	Slide 12: Generalizing the model: data
	Slide 13: Generalizing the model: decision variables
	Slide 14: Generalizing: expressions and constraints
	Slide 15: Reporting the example to be implemented
	Slide 16
	Slide 17: Generalizing the model: DOcplex shortcuts
	Slide 18
	Slide 19
	Slide 20: Generalizing: separating model and data file
	Slide 21: Exercise
	Slide 22: Applications
	Slide 23
	Slide 24
	Slide 25: Lab organization: DOcplex, Cplex C APIs or what?
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Proposed exercises
	Slide 30

