1. **[4 points]** Consider the regular expression \(R = (ab + ba)^*\emptyset(aa) \). Convert \(R \) into an equivalent \(\epsilon \)-NFA using the construction provided in the textbook, and report all the intermediate steps. **Important:** do not simplify the regular expression \(R \) before applying the construction.

2. **[9 points]** Let \(\Sigma = \{a, b, c\} \). For \(w \in \Sigma^* \) and \(X \in \Sigma \), we write \(\#_X(w) \) to denote the number of occurrences of \(X \) in \(w \). Consider the following languages

\[
L_1 = \{ w \mid w \in \Sigma^*, \#_a(w) = \#_b(w) = \#_c(w) \};
\]

\[
L_2 = \{ w \mid w \in \Sigma^*, \#_a(w) = \#_c(w) \}.
\]

(a) Prove that \(L_1 \) is outside of CFL.

(b) Prove that \(L_2 \) is in CFL.

(c) Prove that \(L_2 \) is not in REG.

3. **[5 points]** Consider the CFG \(G \) implicitly defined by the following productions:

\[
S \to AAB \mid ABB \mid BBB \\
A \to aAB \mid bBB \\
B \to b \mid \epsilon
\]

Perform on \(G \) the transformations indicated below, that have been specified in the textbook, in the given order. Report the CFGs obtained at each of the intermediate steps.

(a) Eliminate the \(\epsilon \)-productions

(b) Eliminate the unary productions

(c) Eliminate the useless symbols

(d) Produce a CFG in Chomsky normal form equivalent to \(G \).

(please turn to the next page)
4. [5 points] Assess whether the following statements are true or false, providing motivations for all of your answers.

(a) Let L_1 be a language in REG with L_1 non-finite, and let L_2 be a language in $\text{CFL} \setminus \text{REG}$. The language $L_1 \cap L_2$ may be in $\text{CFL} \setminus \text{REG}$.

(b) Let L_1 be a language in REG with L_1 non-finite, and let L_2 be a language in $\text{CFL} \setminus \text{REG}$. The language $L_1 \cap L_2$ may be in REG.

(c) Let L_1, L_2 be languages in CFL. The language $L_1 \cap L_2$ belongs to \mathcal{P}, the class of languages that can be recognized in polynomial time by a TM.

(d) Let R be the string reversal operator, which we extend to languages. Let L be a language in REC. Then L^R belongs to REC.

5. [4 points] Define the diagonalization language L_d. Show that L_d is not an RE language, using the proof reported in the textbook.

6. [6 points] Consider the following property of the RE languages defined over the alphabet $\Sigma = \{0, 1\}$:

$$\mathcal{P} = \{L \mid L \in \text{RE}, \text{every string in } L \text{ has even length}\}$$

and define $L_\mathcal{P} = \{\text{enc}(M) \mid L(M) \in \mathcal{P}\}$.

(a) Use Rice’s theorem to show that $L_\mathcal{P}$ is not in REC.

(b) Prove that $L_\mathcal{P}$ is not in RE.