
Natural Language Processing
Tutorial 2

Neural dependency parsing

Francesco Cazzaro

Notebook Goal: From theory to practice

Starting from scratch:

● Implement the Arc-standard parser

● Implement an Oracle

● Train a neural model

Reference paper:
Kiperwasser and Goldberg, Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations
Transactions of the Association for Computational Linguistics, Volume 4, 2016.

 He began to write again .

Representing the tree in python

<ROOT> He began to write again .

Representing the tree in python

<ROOT> He began to write again .

Representing the tree in python

 []
Array

<ROOT> He began to write again .

Representing the tree in python

 [-1, 2, 0, 4, 2, 4, 2]

<ROOT> He began to write again .

Representing the tree in python

 [-1, 2, 0, 4, 2, 4, 2]

<ROOT> He began to write again .

Representing the tree in python

 [-1, 2, 0, 4, 2, 4, 2]

Arc-Standard Parser

Arc-Standard Parser

b: [<ROOT>, He, began, to, write, again, .]

b: [0, 1, 2, 3, 4, 5, 6]

Arc-Standard Parser

b: [<ROOT>, He, began, to, write, again, .]
s: []
b: [0, 1, 2, 3, 4, 5, 6]
s: []

Arc-Standard Parser

b: [<ROOT>, He, began, to, write, again, .]
s: []
b: [0, 1, 2, 3, 4, 5, 6]
s: []
a: [-1, -1, -1, -1, -1, -1, -1]

Arc-Standard Parser

b: [<ROOT>, He, began, to, write, again, .]
s: []
b: [0, 1, 2, 3, 4, 5, 6]
s: []
a: [-1, -1, -1, -1, -1, -1, -1]

b: [He, began, to, write, again, .]
s: [<ROOT>]
b: [1, 2, 3, 4, 5, 6]
s: [0]

Arc-Standard Parser

b: [<ROOT>, He, began, to, write, again, .]
s: []
b: [0, 1, 2, 3, 4, 5, 6]
s: []
a: [-1, -1, -1, -1, -1, -1, -1]

b: [He, began, to, write, again, .]
s: [<ROOT>]
b: [1, 2, 3, 4, 5, 6]
s: [0]

b: [began, to, write, again, .]
s: [<ROOT>, He]
b: [2, 3, 4, 5, 6]
s: [0, 1]

Arc-Standard Parser

b: [<ROOT>, He, began, to, write, again, .]
s: []
b: [0, 1, 2, 3, 4, 5, 6]
s: []
a: [-1, -1, -1, -1, -1, -1, -1]

b: [He, began, to, write, again, .]
s: [<ROOT>]
b: [1, 2, 3, 4, 5, 6]
s: [0]

b: [began, to, write, again, .]
s: [<ROOT>, He]
b: [2, 3, 4, 5, 6]
s: [0, 1]

b: [to, write, again, .]
s: [<ROOT>, He, began]
b: [3, 4, 5, 6]
s: [0, 1, 2]

Left-Arc
b: [to, write, again, .]
s: [<ROOT>, He, began]
b: [3, 4, 5, 6]
s: [0, 1, 2]
a: [-1, -1, -1, -1, -1, -1, -1]

b: [to, write, again, .]
s: [<ROOT>, began]
b: [3, 4, 5, 6]
s: [0, 2]
a: [-1, 2, -1, -1, -1, -1, -1]

Goal

Left-Arc
b: [to, write, again, .]
s: [<ROOT>, He, began]
b: [3, 4, 5, 6]
s: [0, 1, 2]
a: [-1, -1, -1, -1, -1, -1, -1]

b: [to, write, again, .]
s: [<ROOT>, He], o1 = began
b: [3, 4, 5, 6]
s: [0, 1], o1 = 2

Left-Arc
b: [to, write, again, .]
s: [<ROOT>, He, began]
b: [3, 4, 5, 6]
s: [0, 1, 2]
a: [-1, -1, -1, -1, -1, -1, -1]

b: [to, write, again, .]
s: [<ROOT>, He], o1 = began
b: [3, 4, 5, 6]
s: [0, 1], o1 = 2

b: [to, write, again, .]
s: [<ROOT>], o1 = began, o2 = He
b: [3, 4, 5, 6]
s: [0], o1 = 2, o2 = 1

Left-Arc
b: [to, write, again, .]
s: [<ROOT>, He, began]
b: [3, 4, 5, 6]
s: [0, 1, 2]
a: [-1, -1, -1, -1, -1, -1, -1]

b: [to, write, again, .]
s: [<ROOT>, He], o1 = began
b: [3, 4, 5, 6]
s: [0, 1], o1 = 2

b: [to, write, again, .]
s: [<ROOT>], o1 = began, o2 = He
b: [3, 4, 5, 6]
s: [0], o1 = 2, o2 = 1

o1 = 2, o2 = 1
a: [-1, 2, -1, -1, -1, -1, -1]

Left-Arc
b: [to, write, again, .]
s: [<ROOT>, He, began]
b: [3, 4, 5, 6]
s: [0, 1, 2]
a: [-1, -1, -1, -1, -1, -1, -1]

b: [to, write, again, .]
s: [<ROOT>, began]
b: [3, 4, 5, 6]
s: [0, 2]
a: [-1, 2, -1, -1, -1, -1, -1]

b: [to, write, again, .]
s: [<ROOT>, He], o1 = began
b: [3, 4, 5, 6]
s: [0, 1], o1 = 2

b: [to, write, again, .]
s: [<ROOT>], o1 = began, o2 = He
b: [3, 4, 5, 6]
s: [0], o1 = 2, o2 = 1

o1 = 2, o2 = 1
a: [-1, 2, -1, -1, -1, -1, -1]

Left-Arc
b: [to, write, again, .]
s: [<ROOT>, He, began]
b: [3, 4, 5, 6]
s: [0, 1, 2]
a: [-1, -1, -1, -1, -1, -1, -1]

b: [to, write, again, .]
s: [<ROOT>, began]
b: [3, 4, 5, 6]
s: [0, 2]
a: [-1, 2, -1, -1, -1, -1, -1]

b: [to, write, again, .]
s: [<ROOT>, He], o1 = began
b: [3, 4, 5, 6]
s: [0, 1], o1 = 2

b: [to, write, again, .]
s: [<ROOT>], o1 = began, o2 = He
b: [3, 4, 5, 6]
s: [0], o1 = 2, o2 = 1

o1 = 2, o2 = 1
a: [-1, 2, -1, -1, -1, -1, -1]

Right-Arc

Your turn!

?

?

Solution

?

b: [to, write, again, .]
s: [<ROOT>, began]
b: [3, 4, 5, 6]
s: [0, 2]
a: [-1, 2, -1, -1, -1, -1, -1]

b: [write, again, .]
s: [<ROOT>, began, to]
b: [4, 5, 6]
s: [0, 2, 3]
a: [-1, 2, -1, -1, -1, -1, -1]

Solution b: [to, write, again, .]
s: [<ROOT>, began]
b: [3, 4, 5, 6]
s: [0, 2]
a: [-1, 2, -1, -1, -1, -1, -1]

b: [write, again, .]
s: [<ROOT>, began, to]
b: [4, 5, 6]
s: [0, 2, 3]
a: [-1, 2, -1, -1, -1, -1, -1]

Arc-Standard Parser

Oracle

● Static
● Left-Arc precedence

Oracle: Left-Arc
Get stack elements

Oracle: Left-Arc
Get stack elements

Verify that σ1 is parent of σ2

Note: if True, σ2 has already taken all its children
because the oracle is static

Oracle: Shift
Necessary condition: buffer must not be empty

Oracle: Shift
Necessary condition: buffer must not be empty

By process of elimination since the oracle is static.

Here we are implementing the Left-Arc precedence!

Oracle: Right-Arc, Your Turn!

Tip: Right-Arc must satisfy an additional condition
with respect to the Left-Arc

?

Oracle: Right-Arc

Even if σ1 is child of σ2 we must check that no
children of σ1 are present in the rest of the buffer

Oracle: Right-Arc

Even if σ1 is child of σ2 we must check that no
children of σ1 are present in the rest of the buffer

b: [again, .]
s: [<ROOT>, began, write,]
a: [-1, 2, -1, 4, -1, -1, -1]
g: [-1, 2, 0, 4, 2, 4, 2]

Example

Oracle: Right-Arc

Even if σ1 is a child of σ2 we must check that no
children of σ1 are present in the rest of the buffer

b: [again, .]
s: [<ROOT>, began, write,]
a: [-1, 2, -1, 4, -1, -1, -1]
g: [-1, 2, 0, 4, 2, 4, 2]

Example

write is a child of began, but we must wait before
doing a Right-Arc otherwise we cannot attach again
as child of write!

Oracle

Oracle

Implementing a Parsing pipeline

We have:
● Parser
● Oracle

Neural model

Use them
to guide

Dataset

Dataset
Determine whether a sentence is projective

Create the word embedding dictionary

Dataloader
Initialize the sentence, the gold tree and the
embeddings ids

gold_path: stores the configurations of the stack and
the buffer

gold_moves: stores the correct gold move at each
configuration

Dataloader
Initialize the sentence, the gold tree and the
embeddings ids

gold_path: stores the configurations of the stack and
the buffer

gold_moves: stores the correct gold move at each
configuration

Dataloader

Neural model

Neural model

Get the embeddings

Neural model

Get the embeddings

Run through the Bi-LSTM

Neural model

Get the embeddings

Run through the Bi-LSTM

Prepare the input for the feedforward. Get the output
of the Bi-LSTM and and prepare it according to each
configuration of the parser.

Neural model

Get the embeddings

Run through the Bi-LSTM

Prepare the input for the feedforward. Get the output
of the Bi-LSTM and and prepare it according to each
configuration of the parser.

Feedforward

Neural model

Neural model

Inference step: the parser runs following the
predictions of the model

Neural model

Inference step: the parser runs following the
predictions of the model

Constraints not implemented in the parser are hidden
here!

Train and Test

