
Natural Language Processing

Lecture 10 : Dependency Parsing

Master Degree in Computer Engineering
University of Padua

Lecturer : Giorgio Satta

Lecture partially based on material originally developed by :
Marco Kuhlman, Linköping University

Natural Language Processing Lecture 10

Dependency Grammars

Gr
ea

t
be

lt
br

id
ge

,D
an

m
ar

k

Natural Language Processing Lecture 10

Dependency tree

©G
re

at
Pl

ai
ns

N
ur

se
ry

Natural Language Processing Lecture 10

Dependency tree

Dependency trees can be traced back to the work of French
linguist Lucien Tesnière (1893-1954).

Very good balance between linguistic expressivity, annotation
cost, and processing efficiency.

At time of writing
10K to 25K tokens per second, using NN model under GPU
100+ languages covered with 200+ treebanks by the universal
dependencies project
the most widespread syntactic representation in natural
language processing

Natural Language Processing Lecture 10

Dependency tree

In a dependency tree, constituents and phrase-structure rules do
not play a direct role.

A dependency tree describes syntactic structure solely in terms of
the words (or lemmas) in a sentence
an associated set of directed binary grammatical relations
(such as subject, object, etc.) that hold among the words

Natural Language Processing Lecture 10

Dependency tree

Example of a dependency tree. Grammatical relations are depicted
above the sentence with directed, labeled arcs from heads to
dependents.
The root relation departs from a dummy node, called root, not displayed.

Natural Language Processing Lecture 10

Dependency tree

Tree-shaped representation of previous analysis. Nodes and arcs
are the same, but word ordering is dropped.

Natural Language Processing Lecture 10

Dependency tree

Dependency trees abstract away from word order information. This
is a major advantage with relatively free word order languages.
Free word order languages are a problem for phrase-structure grammars,
leading to a large number of rules.

Head-dependent relations provide an approximation to semantic
relationships (introduced in next lecture).
Phrase structures provide similar information, but it often has to be extracted
with further processing.

Natural Language Processing Lecture 10

Grammatical functions

Ju
ne

An
dr

ei
Ge

or
ge

fro
m

Un
sp

la
sh

Natural Language Processing Lecture 10

Grammatical functions

Grammatical functions provide the linguistic basis for the
head-dependency relations in dependency structures.
The notion of head was already introduced in the context of phrase structure.

Grammatical functions can be broken into two types
syntactic roles with respect to a predicate (often a verb); in
this case the dependent is called argument
Example : subject, direct object, indirect object
functions that describe ways in which words can modify their
heads; in this case the dependent is called modifier
Example : noun modifier, determiner, adverb, case

Natural Language Processing Lecture 10

Grammatical functions

The Universal Dependencies (UD) project provides an inventory
of dependency relations that are linguistically motivated and
cross-linguistically applicable.

Natural Language Processing Lecture 10

Dependency formalisms

Further constraints on dependency structures are specific to the
underlying grammatical formalism.

Nodes correspond to words in the input sentence. However, they
might also correspond to punctuation, or morphological units
(stems and affixes).

Structures must be connected and have a designated root node;
structures may be acyclic, or planar, and nodes might be
single-headed.

Natural Language Processing Lecture 10

Dependency formalisms

An arc from a head to a dependent is said to be projective if there
is a path from the head to every word that lies between the head
and the dependent in the sentence.

The arc from flight to its modifier was is non-projective since there
is no path from flight to the intervening words this and morning.

Natural Language Processing Lecture 10

Dependency formalisms

A dependency tree is said to be projective if all the arcs are
projective. Otherwise, the tree is non-projective.
The issue of projectivity affects the typology of the parsing algorithm, as we
will see later.

Informally, languages are classified as mostly projective or
non-projective accordingly to the proportion of sentences that have
the mentioned property.
English is an example of a projective language; Czech is an example of a
non-projective language.

Natural Language Processing Lecture 10

Dependency treebanks

D
ig

oa
rp

if
ro

m
Sh

ut
te

rs
to

ck

Natural Language Processing Lecture 10

Dependency treebanks

As with constituent-based methods, treebanks play a critical role in
the development and evaluation of dependency parsers.

The major English dependency treebanks have been automatically
produced from existing phrase structure resources, such as the
Penn Treebank.
Translation algorithm to be presented in next slides.

The Prague Dependency Treebank for Czech is one of the very first
large project developed from scratch.

The already mentioned Universal Dependency project represents
the largest effort in producing dependency treebanks.

Natural Language Processing Lecture 10

Phrase structure to dependency

The conversion process from phrase structure to dependency
structure has two sub-tasks

in a phrase structure, mark the head element at each node;
this can be done using hand-written, deterministic rules
This amounts to converting to a lexicalized CFG.

construct a dependency from the head of each node to the
head of each child node that does not inherit the head

Natural Language Processing Lecture 10

Example

VP[give]

NP[book]

N[book]

book

Det[a]

a

NP[John]

N[John]

John

V[give]

give

give John a book

Natural Language Processing Lecture 10

Universal dependency project

At time of writing, the UD project covers over 100 languages with
over 200 dependency treebanks.

ht
tp

s:
//

un
iv

er
sa

ld
ep

en
de

nc
ie

s.
or

g/

Natural Language Processing Lecture 10

https://universaldependencies.org/

Transition-based dependency parsing

M
an

ue
lM

nv
x

fro
m

Un
sp

la
sh

Natural Language Processing Lecture 10

Transition-based dependency parsing

Transition-based parsing is a popular technique at the time of
writing.
Also used for semantic parsing, as we will see in next lecture.

Inspired by push-down automata, it uses two main data
structures:

buffer, initialized with the input string
stack, used as working memory

In contrast with push-down automata, in transition-based parser
there is no use of internal states
stack alphabet is the same as input alphabet

Natural Language Processing Lecture 10

Transition-based dependency parsing

A configuration of the parser consists of a stack, an input buffer,
and a set of dependencies constructed so far (partial tree).

Parser is nondeterministic, and an oracle is used to drive the
search.
We will use supervised machine learning methods to produce oracles.

Natural Language Processing Lecture 10

Arc-standard parser

We consider the arc-standard model for projective parsing, using
three transition operators

shift: remove first buffer element and push it into the stack
leftArc: pop second top-most stack element and attach it
as a dependent to the top-most element
rightArc: pop top-most stack element and attach it as a
dependent to the second top-most element

Preconditions reported in the textbook.

Parser is purely bottom-up: after an element is attached, it is no
longer available for further processing.
Several other models are also found in the literature.

Natural Language Processing Lecture 10

Example

Natural Language Processing Lecture 10

Arc-standard parser

Parser uses a greedy strategy: the oracle provides a single choice
at each step, alternative options are dropped.

Parser runs in linear time in the input string
each word must first be shifted
later the word is attached (reduction)

Natural Language Processing Lecture 10

Arc-standard parser

Several transition sequences may lead to the same parse tree, we
will have to rest on some canonical strategy.
We may collect left and right dependents in any order; this is called spurious
ambiguity.

To produce labeled dependencies, we need to expand the set of
transition operators, using for instance leftArc(nsubj),
rightArc(dobj), etc.
To keep the presentation simple, we ignore dependency labels in this lecture.

Natural Language Processing Lecture 10

Generating training data

Ch
ut

te
rs

na
p

fro
m

Un
sp

la
sh

Natural Language Processing Lecture 10

Generating training data

In transition-based parsing, the parsing task is broken down into a
sequence of transitions, chosen by an oracle. The oracle takes as
input a parser configuration and returns a transition operator.

Supervised machine learning is used to train classifiers that play
the role of the oracle.

We need to produce training instances for these classifiers that
are pairs of the form (configuration, transition).

We do this by deriving canonical sequences of transitions of the
parser for each reference dependency tree.

Natural Language Processing Lecture 10

Generating training data

Given a configuration c and a reference tree t, training instance is
produced as follows:

choose leftArc if on c it produces a dependency in t
otherwise, choose rightArc if

on c it produces a dependency in t
all of the dependents of the word at the top of the stack in c
have already been assigned

otherwise, choose shift.

We assign precedence to left attachment, thus solving spurious
ambiguity

rightArc choice is restricted to ensure that a word is not popped
before all its dependents have been attached
The above oracle is defined for the arc-standard parser.

Natural Language Processing Lecture 10

Example

Natural Language Processing Lecture 10

Feature extraction

Natural Language Processing Lecture 10

Feature extraction

Before neural parsing, the dominant approaches to training
transition-based dependency parsers have been

perceptron
multinomial logistic regression
support vector machines

For this we need to extract useful features from training instances
pc, opq, c a configuration and op a transition operator.

This is done by defining some feature function f that provides a
vector f pc, opq of feature values.

Natural Language Processing Lecture 10

Feature extraction

Feature functions are usually specified by means of feature
templates, defined as pairs of the form location.properties

Possible locations are
si : the stack element at position i (1 is the top-most position)
bi : the buffer element at position i (1 is the left-most
position)
the set of dependency relations r

Useful properties are
the word form w
the lemma l
the POS tag t

Natural Language Processing Lecture 10

Feature extraction

To avoid data sparseness, we focus on
the top levels of the stack
the words near the front of the buffer
the dependency relations already associated with the above
elements

Example :
s1.w is the word form of the topmost stack element
s2.tw is the POS tag and word form of the second topmost
stack element
b1.l is the lemma of the first element in the buffer

Natural Language Processing Lecture 10

Feature extraction

Given that leftArc and rightArc operate on the top two
elements of the stack, feature templates that combine properties
from these positions are also very useful, called second order
feature templates.

Example :
The feature template s1.t ˝ s2.t concatenates the POS tag of the
word at the top of the stack with the POS tag of the word
beneath it.

Natural Language Processing Lecture 10

Feature extraction

Here is a set of feature templates used in most of the work for
transition-based parsing around the year 2010

Natural Language Processing Lecture 10

Feature extraction

Using feature templates and training dataset, we create feature
instantiations and use them in the definition of function f .

Example : From the feature template s1.t ˝ s2.t we can set

f3107pc, opq “ Ips1.t ˝ s2.t “ NNS ¨ VBD, op “ shiftq

where positions s1 and s2 are relative to c.
Recall that IpPq “ 1 when predicate P holds true and IpPq “ 0 otherwise.

Vectors f pc, opq are very sparse and are usually implemented as
dictionaries.
We create features only for those template instantiations that are observed at
least ∆ ą 0 times in the training set.

Natural Language Processing Lecture 10

Alternative models for dependency parsing

M
od

es
ta

s
Ur

bo
na

s
fro

m
Un

sp
la

sh

Natural Language Processing Lecture 10

Other transition-based parsers

A frequently used alternative to the arc-standard is the arc-eager
parser for projective parsing, based on the following transition
operators

shift: as in arc-standard
leftArc: pop top-most stack element and attach it as a
dependent of the first buffer element
rightArc: attach first buffer element as a dependent of the
top-most stack element, and shift first buffer element into the
stack
reduce: pop the stack

The arc-eager parser works bottom-up on left dependents, and top-down on
right dependents.

Natural Language Processing Lecture 10

Other transition-based parsers

The so-called Attardi parser is able to produce non-projective
dependency trees.

What follows is a simplified version of the system, using five
transition operators

shift, leftArc, rightArc: as in arc-standard
leftArc2: pop third top-most stack element and attach it
as a dependent to the top-most stack element
rightArc2: pop top-most stack element and attach it as a
dependent to the third top-most stack element

Natural Language Processing Lecture 10

Other transition-based parsers

We have defined an oracle for the arc-standard parser that
provides a canonical transition operator
assumes that no parsing error has occurred in the parsing
history leading to the input configuration
This is called teacher forcing, see previous lectures.

These are called static oracles.

Oracles that provide sets of transition operators are called
nondeterministic.
Due to spurious ambiguity, there might be more than one correct transition
operator.

Oracles that do not assume correct parsing history are called
dynamic oracles.

Natural Language Processing Lecture 10

Other transition-based parsers

Alternatively to the oracle, one can use beam search. This is
based on an agenda of configurations having size b, called beam
width.

At each step
apply all possible transition operators to each configuration in
the agenda and score the resulting configurations
refresh the agenda with the b best scoring new configurations
stop when all configurations in the agenda are final

This is a combination of breadth-first search strategy with a heuristic filter that
prunes the search.

Natural Language Processing Lecture 10

Other transition-based parsers

Beam search requires a more elaborate notion of scoring than
greedy algorithms.
Greedy strategy searches the best transition, beam search searches through the
space of all decision sequences.

We define the score of a configuration ci on the basis of the
associated parsing history op1, . . . , opi

ConfigScorepc0q “ 0.0
ConfigScorepciq “ ConfigScorepci´1q ` Scorepci´1, opiq

Natural Language Processing Lecture 10

Other dependency parsers

Graph-based dependency parsing casts parsing as a global
optimisation problem over a set of dependency trees.
Contrast with transition-based parsing, which solves a local classification
problem.

Let Ψ be a scoring function. Given a sentence x and a set of
candidate trees Ypxq for x , we want to find a highest-scoring tree ŷ

ŷ “ argmax
yPYpxq

Ψpx , yq

The computational complexity of this problem depends on the
choice of candidate set Ypxq and the scoring function Ψ.

Natural Language Processing Lecture 10

Other dependency parsers

If the tree score is computed on the basis of the scores of each
dependency relation, called edge-factored model, then

the search space Ypxq can be represented as a directed graph
the optimization problem can be solved using maximum
spanning tree methods (MST)
time complexity becomes polynomial

Dropping the edge-factored assumption, the problem becomes NP-hard.

Graph-based dependency parsing is generally used for
non-projective dependency parsing.

Natural Language Processing Lecture 10

Neural dependency parsing

ht
tp

s:
//

to
wa

rd
sd

at
as

ci
en

ce
.c

om

Natural Language Processing Lecture 10

https://towardsdatascience.com

Neural dependency parsing

A crucial step in parser design is choosing the right feature
function for the underlying statistical model.

Previous machine learning approaches require complex,
hand-crafted features.
This has been called the feature engineering problem.

Neural networks allow a much simpler approach in terms of
feature engineering.

Natural Language Processing Lecture 10

Neural dependency parsing (Kiperwasser & Goldberg 2016)

Bidirectional long short term memory networks (BiLSTM) excel at
representing words together with their contexts, capturing each
element and an “unbounded” window around it.
This has already been pointed out for the ELMo architecture in a previous
lecture.

Crucially, the BiLSTM is trained with the rest of the parser, in
order to learn a good feature representation for the problem.

Natural Language Processing Lecture 10

Neural dependency parsing (Kiperwasser & Goldberg 2016)

This is a general overview of the architecture; detailed explanation reported in
the slides to follow.

Natural Language Processing Lecture 10

Feature extraction (Kiperwasser & Goldberg 2016)

An LSTM maps a sequence of input vectors

x1:t “ x1, . . . , xt

to a sequence of output vectors

h1:t “ h1, . . . , ht

where xi P Rdin and hi P Rdout .

We schematically write this by means of the recurrent relation

Lstmpx1:tq “ Lstmpht´1, xtq “ ht

Vector ht is conditioned on all the input vectors x1:t

Natural Language Processing Lecture 10

Feature extraction (Kiperwasser & Goldberg 2016)

Let w “ w1w2 ¨ ¨ ¨ wn be the input sentence, and let t1t2 ¨ ¨ ¨ tn be
the corresponding POS tags.
Assume POS tags are provided by an external module.

We define vectors
xi “ epwiq ˝ eptiq,

where epq is an embedding and ˝ denotes vector concatenation.

A BiLSTM is composed by two LSTM LstmL and LstmR reading
the sentence in opposite order

BiLstmpx1:n, iq “ LstmLpx1:iq ˝ LstmRpxn:iq “ vi

Natural Language Processing Lecture 10

Feature extraction (Kiperwasser & Goldberg 2016)

During training
the BiLSTM encodings vi are fed into further network layers
the back-propagation algorithm is used to optimize the
parameters of the BiLSTM

The above training procedure causes the BiLSTM function to
extract from the input the relevant information for the task at
hand.

Natural Language Processing Lecture 10

Feature function and model (Kiperwasser & Goldberg 2016)

Our feature function ϕpcq is the concatenation of the BiLSTM
vectors for

the top 3 items on the stack
the first item in the buffer

ϕpcq “ vs3 ˝ vs2 ˝ vs1 ˝ vb1

vi “ BiLstmpx1:n, iq

Note that this feature function does not take into account the already built
dependencies.

Transition scoring is then defined as a multi-layer perceptron
(MLP), op is a transition of our parser

Scorepϕpcq, opq “ MLPpϕpcqqrops

Natural Language Processing Lecture 10

Training algorithm (Kiperwasser & Goldberg 2016)

Use a margin-based objective, aiming to maximize the margin
between

the highest scoring correct action
the highest scoring incorrect action

Let A be the set of possible transitions and G be the set of correct
(gold) transitions at the current step.
In case of the arc-standard oracle in previous slides, we always have |G | “ 1.

The hinge loss at each parsing configuration c is defined as

max
ˆ

0, 1 ´ max
opPG

Scorepϕpcq, opq

` max
op1PA∖G

Scorepϕpcq, op1q

˙

Natural Language Processing Lecture 10

Practical issues

To increase gradient stability and training speed, simulate
mini-batch updates by only updating the parameters when the
sum of local losses contains at least 50 non-zero elements.

Perform several training iterations over the training corpus,
shuffling the order of sentences at each iteration.

Natural Language Processing Lecture 10

Research papers

Ja
nk

o
Fe

rli
c

on
Un

sp
la

sh
Natural Language Processing Lecture 10

Research papers

Title: Simple and Accurate Dependency Parsing Using
Bidirectional LSTM Feature Representations
Authors: Eliyahu Kiperwasser, Yoav Goldberg
Journal: TACL, vol. 4, 2016
Content: This work presents a scheme for dependency parsing
based on bidirectional-LSTMs trained jointly with the parser
objective, resulting in very effective feature extractors for parsing.
The effectiveness of the approach is demonstrated by applying it to
a greedy transition-based parser as well as to a globally optimized
graph-based parser.
https://www.aclweb.org/anthology/Q16-1023/

Natural Language Processing Lecture 10

https://www.aclweb.org/anthology/Q16-1023/

Research papers

Title: Stanza : A Python Natural Language Processing Toolkit for
Many Human Languages
Authors: Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
Christopher D. Manning
Conference: ACL 2020
Content: This article introduces an open-source Python natural
language processing toolkit supporting 66 human languages. This
includes tokenization, multi-word token expansion, lemmatization,
part-of- speech and morphological feature tagging, dependency
parsing, and named entity recognition.
https://aclanthology.org/2020.acl-demos.14.pdf

Natural Language Processing Lecture 10

https://aclanthology.org/2020.acl-demos.14.pdf

Evaluation

Natural Language Processing Lecture 10

Evaluation

Similarly to phrase structure parsing, the evaluation of dependency
parsing measures how well a parser works on a test set.

A crude metric is exact match, or EM for short, defined as the
number of sentences that are parsed correctly.

Under EM most sentences in the test set will be marked as wrong,
the measure is not fine-grained enough to guide the development
process.

Natural Language Processing Lecture 10

Evaluation

Most common method for evaluating dependency parsers is based
on the accuracy of the dependency relations.

Given the system output and a corresponding reference parse
unlabeled attachment score (UAS) is the percentage of
words in the input that are attached to the correct head,
ignoring the dependency label
labeled attachment score (LAS) is the percentage of words
in the input that are attached to the correct head with the
correct dependency relation

Natural Language Processing Lecture 10

Example

The system correctly finds 4 of the 6 dependency relations in the
reference parse, achieving LAS of 2/3.

If we ignore the label iobj, the dependency between book and
flight is also in the reference parse, providing UAS of 5/6.

Natural Language Processing Lecture 10

