AURIX Analog-to-Digital Converters
Introduction to ADC

ADC Theory
- Sampling
- Resolution
- Nonlinearities
- Dynamic range
- SAR ADC example

AURIX ADC
- AURIX ADC Modules
- EVADC Groups & Channels
- EVADC Conversion Queue
- EVADC Initialisation Sequence

Hands-on session
Introduction to ADC

ADC is a circuit that converts an analog signal (voltage variation over time) into discrete form (digital values) that can be processed by HW or SW

Types of ADC:
- **SAR** – Successive Approximation Register ADC
- **DSADC** – Delta-Sigma (Sigma-Delta) ADC
- **FLASH-ADC**
- Pipeline ADC
- Dual-Slope
ADC characteristics

Key Characteristics
- Sampling Rate
- Resolution
- DC & AC nonlinearities
- Dynamic range
- Supply level, consumption
- Input types
- Output format
The **sample rate** or sampling frequency is the maximum rate at which an ADC can convert the analog signal into a digital data.

The selection of the Sampling rate depends on the input signal's highest frequency component (fa) and is defined by the **Nyquist frequency** (fs):

\[fs \geq fa \times 2 \]

Understanding the input signals properties e.g. highest frequency content is an important part of getting accurate measurements and avoiding Aliasing.
The resolution determines the minimum change in the input signal that makes the output change by one count.

The resolution is expressed as a number of output bits. The smallest increment in the signal value that can be recognized by an ADC is defined as least significant bit (LSB):

\[1 \text{ LSB} = \frac{V_{\text{ref}}}{2^N - 1} \]

<table>
<thead>
<tr>
<th>Resolution, N</th>
<th>(2^N)</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>8bit</td>
<td>255</td>
<td>10 mV</td>
</tr>
<tr>
<td>10bit</td>
<td>1024</td>
<td>5 mV</td>
</tr>
<tr>
<td>12bit</td>
<td>4096</td>
<td>1.22 mV</td>
</tr>
<tr>
<td>14bit</td>
<td>16384</td>
<td>0.3 mV</td>
</tr>
<tr>
<td>16bit</td>
<td>65536</td>
<td>0.075 mV</td>
</tr>
</tbody>
</table>

V_{\text{ref}} = 5V
ADC Nonlinearities

Transfer function nonlinearities in a real ADC

Total Unadjusted Error (TUE) defines the maximum deviation (in LSBs) from the ideal transfer curve

\[TUE = \sqrt{\text{Offset}^2 + \text{Gain}^2 + \text{DNL}^2 + \text{INL}^2} \]
Dynamic range defines the ratio between the minimum and the maximum input values that an ADC can reliably convert.

The achieve maximum conversion precision the input signal has to match to the dynamic range of an ADC. The signal amplification or attenuation might be required.

Data Conversion

\[\text{Digital_value} = \frac{\text{Vin}}{\text{Vref}} \times (2^N - 1) \]

\[\text{Vin} = \frac{\text{Digital_value}}{\left(\frac{2^N}{2^N - 1}\right)} \times \text{Vref} \]
SAR ADC

This sampled input from Sample & Hold (SH) capacitor is fed into a comparator along with the input from an internal DAC, the output of which is adjusted in binary increments to get as close as possible to the sampled value.

SAR ADC employs a binary search algorithm to match an input voltage with a reference value.

4-bit conversion example
AURIX TC3x ADC

Three ADC types in AURIX

- **SAR** x 12 by 8/16 channels
 - **EVADC** Primary 12 bit, ≤ 2.5MS/s
 - **EVADC** Secondary 12 bit, ≤ 1.4MS/s
- **Fast Compare** x8 10 bit, ≤ 5MS/s
- **EDSADC** x14 16 bit, ≤ 200KS/s

TC375: 8 x EVADC, 4 x FCC, 6 x EDSADC
EVADC Group & Channels

Each **EVADC Group** is an independent SAR converter that consists of 8 (or 16) input channels, Multiplexer, Converter, Control Logic, Request control and Result handling.

EVADC input channels are multiplexed to connect the corresponding signal source to the converter one at a time. For each channel, the sample time can be controlled individually.
EVADC Conversion

EVADC is designed to execute complex sequences of conversions by filling up *Queues*

Conversion Request
Conversion sequence can be started (requested) by 3 different sources:
- Software Trigger
- Self-Timed Trigger,
- External Trigger e.g. GPIO, GTM

The requested conversion can be executed once or repeatedly after trigger.

Arbiter
When multiple conversion requests are used arbitration process defines which conversion is executed next based on assigned priorities.
Enable a primary/secondary group and prepare it for operation

EVADC_GxANCFG = 0x00300000
; Analog clock frequency is 160 MHz / 4 = 40 MHz (example)
; CALSTC = 0

EVADC_GxAARB_CFG = 0x0000003
; Enable analog block

WAIT
; Pause for extended wakeup time (≈ 5 µs)

EVADC_GLOBCFG = 0x80000000
; Begin start-up calibration
; (other operations can be executed in the meantime)

EVADC_GxAARBPR = 0x01000000
; Enable arbitration slot 0

EVADC_GxQMR0 = 0x00000001
; Enable request source 0

EVADC_GxICLASS0 = 0x00000002
; Select 4 clocks for sampletime 4 / 40 MHz = 100 ns
; The default setting stores results in GXRES0,
; service requests are issued on GxSR0

EVADC_GxRCR0 = 0x80000000
; Enable result service requests, if required

EVADC_GxQINR0 = 0x00000020
; Request channel 0 in auto-repeat mode

WAIT
; Wait for start-up calibration to complete
; (other operations can be executed in the meantime)
; ---> This starts continuous conversion of the channel

EVADC basic setup sequence

- **Clk & Analog Block enable**
- **Request source and queue settings**
- **Sample time settings**
- **Start conversion**
- **Wait for the 1st conversion result**
ADC_Single_Channel_1 for KIT_AURIX_TC375_LK

Code Example

```
STM32 HAL ADC

// 1. Define interrupt service routine.
2  STM32F4 HAL ADC
3  STM32F4 HAL ADC
4  STM32F4 HAL ADC
5  STM32F4 HAL ADC
6  STM32F4 HAL ADC
7  STM32F4 HAL ADC
8  STM32F4 HAL ADC
9  STM32F4 HAL ADC
10  STM32F4 HAL ADC
11  STM32F4 HAL ADC
12  STM32F4 HAL ADC
13  STM32F4 HAL ADC
14  STM32F4 HAL ADC
15  STM32F4 HAL ADC
16  STM32F4 HAL ADC
17  STM32F4 HAL ADC
18  STM32F4 HAL ADC
19  STM32F4 HAL ADC
20  STM32F4 HAL ADC
21  STM32F4 HAL ADC
22  STM32F4 HAL ADC
23  STM32F4 HAL ADC
24  STM32F4 HAL ADC
25  STM32F4 HAL ADC
26  STM32F4 HAL ADC
27  STM32F4 HAL ADC
28  STM32F4 HAL ADC
29  STM32F4 HAL ADC
30  STM32F4 HAL ADC
31  STM32F4 HAL ADC
32  STM32F4 HAL ADC
33  STM32F4 HAL ADC
34  STM32F4 HAL ADC
35  STM32F4 HAL ADC
36  STM32F4 HAL ADC
37  STM32F4 HAL ADC
38  STM32F4 HAL ADC
39  STM32F4 HAL ADC
40  STM32F4 HAL ADC
41  STM32F4 HAL ADC
42  STM32F4 HAL ADC
43  STM32F4 HAL ADC
44  STM32F4 HAL ADC
45  STM32F4 HAL ADC
46  STM32F4 HAL ADC
47  STM32F4 HAL ADC
48  STM32F4 HAL ADC
49  STM32F4 HAL ADC
50  STM32F4 HAL ADC
51  STM32F4 HAL ADC
52  STM32F4 HAL ADC
53  STM32F4 HAL ADC
54  STM32F4 HAL ADC
55  STM32F4 HAL ADC
56  STM32F4 HAL ADC
57  STM32F4 HAL ADC
58  STM32F4 HAL ADC
59  STM32F4 HAL ADC
60  STM32F4 HAL ADC
61  STM32F4 HAL ADC
62  STM32F4 HAL ADC
63  STM32F4 HAL ADC
64  STM32F4 HAL ADC
65  STM32F4 HAL ADC
66  STM32F4 HAL ADC
67  STM32F4 HAL ADC
68  STM32F4 HAL ADC
69  STM32F4 HAL ADC
70  STM32F4 HAL ADC
71  STM32F4 HAL ADC
72  STM32F4 HAL ADC
73  STM32F4 HAL ADC
74  STM32F4 HAL ADC
75  STM32F4 HAL ADC
76  STM32F4 HAL ADC
77  STM32F4 HAL ADC
78  STM32F4 HAL ADC
79  STM32F4 HAL ADC
80  STM32F4 HAL ADC
81  STM32F4 HAL ADC
82  STM32F4 HAL ADC
83  STM32F4 HAL ADC
84  STM32F4 HAL ADC
85  STM32F4 HAL ADC
86  STM32F4 HAL ADC
87  STM32F4 HAL ADC
88  STM32F4 HAL ADC
89  STM32F4 HAL ADC
90  STM32F4 HAL ADC
91  STM32F4 HAL ADC
92  STM32F4 HAL ADC
93  STM32F4 HAL ADC
94  STM32F4 HAL ADC
95  STM32F4 HAL ADC
96  STM32F4 HAL ADC
97  STM32F4 HAL ADC
98  STM32F4 HAL ADC
99  STM32F4 HAL ADC
100  STM32F4 HAL ADC
101  STM32F4 HAL ADC
102  STM32F4 HAL ADC
103  STM32F4 HAL ADC
104  STM32F4 HAL ADC
105  STM32F4 HAL ADC
106  STM32F4 HAL ADC
107  STM32F4 HAL ADC
108  STM32F4 HAL ADC
109  STM32F4 HAL ADC
110  STM32F4 HAL ADC
111  STM32F4 HAL ADC
112  STM32F4 HAL ADC
113  STM32F4 HAL ADC
114  STM32F4 HAL ADC
115  STM32F4 HAL ADC
116  STM32F4 HAL ADC
117  STM32F4 HAL ADC
118  STM32F4 HAL ADC
119  STM32F4 HAL ADC
120  STM32F4 HAL ADC
121  STM32F4 HAL ADC
122  STM32F4 HAL ADC
123  STM32F4 HAL ADC
124  STM32F4 HAL ADC
125  STM32F4 HAL ADC
126  STM32F4 HAL ADC
127  STM32F4 HAL ADC
128  STM32F4 HAL ADC
129  STM32F4 HAL ADC
130  STM32F4 HAL ADC
131  STM32F4 HAL ADC
132  STM32F4 HAL ADC
133  STM32F4 HAL ADC
134  STM32F4 HAL ADC
135  STM32F4 HAL ADC
136  STM32F4 HAL ADC
137  STM32F4 HAL ADC
138  STM32F4 HAL ADC
139  STM32F4 HAL ADC
140  STM32F4 HAL ADC
141  STM32F4 HAL ADC
142  STM32F4 HAL ADC
143  STM32F4 HAL ADC
144  STM32F4 HAL ADC
145  STM32F4 HAL ADC
146  STM32F4 HAL ADC
147  STM32F4 HAL ADC
148  STM32F4 HAL ADC
149  STM32F4 HAL ADC
150  STM32F4 HAL ADC
151  STM32F4 HAL ADC
152  STM32F4 HAL ADC
153  STM32F4 HAL ADC
154  STM32F4 HAL ADC
155  STM32F4 HAL ADC
156  STM32F4 HAL ADC
157  STM32F4 HAL ADC
158  STM32F4 HAL ADC
159  STM32F4 HAL ADC
160  STM32F4 HAL ADC
161  STM32F4 HAL ADC
162  STM32F4 HAL ADC
163  STM32F4 HAL ADC
164  STM32F4 HAL ADC
165  STM32F4 HAL ADC
166  STM32F4 HAL ADC
167  STM32F4 HAL ADC
168  STM32F4 HAL ADC
169  STM32F4 HAL ADC
170  STM32F4 HAL ADC
171  STM32F4 HAL ADC
172  STM32F4 HAL ADC
173  STM32F4 HAL ADC
174  STM32F4 HAL ADC
175  STM32F4 HAL ADC
176  STM32F4 HAL ADC
177  STM32F4 HAL ADC
178  STM32F4 HAL ADC
179  STM32F4 HAL ADC
180  STM32F4 HAL ADC
181  STM32F4 HAL ADC
182  STM32F4 HAL ADC
183  STM32F4 HAL ADC
184  STM32F4 HAL ADC
185  STM32F4 HAL ADC
186  STM32F4 HAL ADC
187  STM32F4 HAL ADC
188  STM32F4 HAL ADC
189  STM32F4 HAL ADC
190  STM32F4 HAL ADC
191  STM32F4 HAL ADC
192  STM32F4 HAL ADC
193  STM32F4 HAL ADC
194  STM32F4 HAL ADC
195  STM32F4 HAL ADC
196  STM32F4 HAL ADC
197  STM32F4 HAL ADC
198  STM32F4 HAL ADC
199  STM32F4 HAL ADC
200  STM32F4 HAL ADC
```

Tutorial

ADC_Single_Channel_1 for KIT_AURIX_TC375_LK
ADC single channel conversion
Resources

Books

Application Notes

AP56003 A Guide to the Analog Part of the A/D Converter

AP32297 A/D Converter Supply and PCB Design Guideline

Code examples & Tutorials

https://github.com/Infineon/AURIX_code_examples/blob/master/code_examples

Part of your life. Part of tomorrow.