Lecture 7
Continuous–time Markov chains

Alessandro Abate

Department of Computer Science
University of Oxford
Time in DTMCs

• Time in a DTMC proceeds in discrete steps

• Two possible interpretations:
 – accurate model of (discrete) time units
 • e.g. clock ticks in model of an embedded device
 – time-abstract
 • no information assumed about the time transitions take

• Continuous-time Markov chains (CTMCs)
 – dense model of time
 – transitions can occur at any (real-valued) time instant
 – modelled using exponential distributions
Overview

• Exponential distribution and its properties

• Continuous-time Markov chains (CTMCs)
 – definition, examples
 – race condition
 – embedded DTMC
 – generator matrix

• Paths and probabilities
 – probabilistic reachability
Continuous probability distributions

- Consider r.v. X defined by:
 - cumulative distribution function (cdf)
 \[F(t) = \Pr(X \leq t) = \int_{-\infty}^{t} f(x) \, dx \]
 - f being the probability density function (pdf)
 - $\Pr(X=t) = 0$ for all t

- Example: uniform distribution: $U(a,b)$

\[
\begin{align*}
 f(t) &= \begin{cases}
 \frac{1}{b-a} & \text{if } a \leq t \leq b \\
 0 & \text{otherwise}
 \end{cases} \\
 F(t) &= \begin{cases}
 0 & \text{if } t < a \\
 \frac{t-a}{b-a} & \text{if } a \leq t \leq b \\
 1 & \text{if } t \geq b
 \end{cases}
\end{align*}
\]
Exponential distribution

• A continuous random variable X is exponential with parameter $\lambda > 0$ if the density function is given by:

$$f(t) = \begin{cases}
\lambda \cdot e^{-\lambda \cdot t} & \text{if } t > 0 \\
0 & \text{otherwise}
\end{cases}$$

we write: $X \sim \text{Exponential}(\lambda)$

• Cumulative distribution function (for $t \geq 0$):

$$F(t) = \Pr(X \leq t) = \int_0^t \lambda \cdot e^{-\lambda \cdot x} \, dx = \left[-e^{-\lambda \cdot x} \right]_0^t = 1 - e^{-\lambda \cdot t}$$

• Other properties:

 – negation: $\Pr(X > t) = e^{-\lambda \cdot t}$

 – mean (expectation): $E[X] = \int_0^\infty x \cdot \lambda \cdot e^{-\lambda \cdot x} \, dx = \frac{1}{\lambda}$

 – variance: $\text{Var}(X) = \frac{1}{\lambda^2}$
Exponential distribution – Examples

- The larger the value of λ, the faster the c.d.f. approaches 1 (saturates)
Exponential distribution

- Adequate for **modelling** many real-life phenomena (constant rate, independent events)
 - Failures in process engineering
 - e.g. time before machine component fails
 - Inter-arrival times in communication engineering
 - e.g. time before next call/customer arrives to a call centre/shop
 - Biological/chemical systems
 - e.g. times within successive reactions between species

- **Maximal entropy** (“uncertainty”) if just the mean is known
 - i.e. best approximation when only mean is known

- Can **approximate** general distributions arbitrarily closely
 - phase-type distributions
Exponential distribution – Property 1

• The exponential distribution has the **memoryless** property:
 \[\Pr(X > t_1 + t_2 \mid X > t_1) = \Pr(X > t_2) \]

• The exponential distribution is the **only** continuous distribution that is memoryless
 – discrete-time equivalent is the geometric distribution
Exponential distribution – Property 1

• The exponential distribution has the memoryless property:
 - \(\Pr(X > t_1 + t_2 \mid X > t_1) = \Pr(X > t_2) \)

• \(\Pr(X > t_1 + t_2 \mid X > t_1) = \Pr(X > t_1 + t_2 \land X > t_1) / \Pr(X > t_1) \)
 - \(= \Pr(X > t_1 + t_2) / \Pr(X > t_1) \)
 - \(= e^{-\lambda \cdot (t_1 + t_2)} / e^{-\lambda \cdot t_1} \)
 - \(= (e^{-\lambda \cdot t_1} \cdot e^{-\lambda \cdot t_2}) / e^{-\lambda \cdot t_1} \)
 - \(= e^{-\lambda \cdot t_2} \)
 - \(= \Pr(X > t_2) \)

• The exponential distribution is the only continuous distribution that is memoryless
 - discrete-time equivalent is the geometric distribution
Exponential distribution – Property 2

• The **minimum** of two independent exponential distributions is an exponential distribution (parameter is sum)
 – \(X_1 \sim \text{Exponential}(\lambda_1), \ X_2 \sim \text{Exponential}(\lambda_2) \)
 – \(Y = \min(X_1, X_2) \)

 – \(Y \sim \text{Exponential}(\lambda_1 + \lambda_2) \)

• Generalises to minimum of \(n \) distributions
• Maximum is not exponential
Exponential distribution – Property 2

• The minimum of two independent exponential distributions is an exponential distribution (parameter is sum)
 – $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 – $Y = \min(X_1, X_2)$

\[
\Pr(Y \leq t) = \Pr(\min(X_1, X_2) \leq t) \\
= 1 - \Pr(\min(X_1, X_2) > t) \\
= 1 - \Pr(X_1 > t \land X_2 > t) \\
= 1 - \Pr(X_1 > t) \cdot \Pr(X_2 > t) \\
= 1 - e^{-\lambda_1 t} \cdot e^{-\lambda_2 t} \\
= 1 - e^{-(\lambda_1 + \lambda_2)t}
\]

– $Y \sim \text{Exponential}(\lambda_1 + \lambda_2)$

• Generalises to minimum of n distributions
• Maximum is not exponential
Exponential distribution – Property 3

• Consider two independent exponential distributions
 – \(X_1 \sim \text{Exponential}(\lambda_1) \), \(X_2 \sim \text{Exponential}(\lambda_2) \)
 – what is the probability that \(X_1 < X_2 \)?

\[
P(X_1 < X_2) = P(\min\{X_1, X_2\} = X_1) \\
= \int_0^{\infty} P(X_1 = x)P(X_2 > x)dx \\
= \int_0^{\infty} \lambda_1 e^{-\lambda_1 x} e^{-\lambda_2 x} dx \\
= \lambda_1 \int_0^{\infty} e^{-(\lambda_1+\lambda_2) x} dx \\
= \frac{\lambda_1}{\lambda_1 + \lambda_2}
\]

– probability that \(X_1 < X_2 \) is \(\frac{\lambda_1}{\lambda_1 + \lambda_2} \)

• Generalises to \(n \) distributions
Continuous–time Markov chains

- **Continuous–time Markov chains (CTMCs)**
 - labelled transition systems augmented with rates
 - discrete states
 - *continuous* time steps
 - delays *exponentially* distributed

- **Suited to modelling:**
 - reliability/dependency models
 - control systems
 - queueing and communication networks
 - biological pathways
 - chemical reaction nets
 - DNA computing ...
Continuous–time Markov chains

- Formally, a CTMC C is a tuple $(S, s_{\text{init}}, R, L)$ where:
 - S is a finite set of states ("state space")
 - $s_{\text{init}} \in S$ is the initial state
 - $R : S \times S \to \mathbb{R}_{\geq 0}$ is the transition rate matrix
 - $L : S \to 2^{\text{AP}}$ is a labelling with atomic propositions

- Transition rate matrix assigns rates to each pair of states
 - used as a parameter to the exponential distribution
 - transition between s and s' when $R(s,s') > 0$
 - probability of transition before t time units: $1 - e^{-R(s,s') \cdot t}$

- Assumption for this lecture
 - by convention, $R(s,s) = 0$ (can be generalised easily)
Simple CTMC example

- Modelling a queue of jobs
 - maximum size of the queue is 3
 - state space: $S = \{s_i\}_{i=0..3}$ where s_i indicates i jobs in queue
 - initially the queue is empty
 - jobs arrive with rate $3/2$ (i.e. mean inter-arrival time is $2/3$)
 - jobs are served with rate 3 (i.e. mean service time is $1/3$)
Race conditions

- What happens when there exists multiple s’ with $R(s,s’)>0$?
 - race condition: first transition triggered determines next state
 - two questions:
 - 1. How long is spent in s before a transition occurs?
 - 2. Which transition is eventually taken?

- 1. Time spent in a state before a transition
 - minimum of exponential distributions
 - exponential with parameter given by summation:
 $$E(s) = \sum_{s’ \in S} R(s, s’)$$
 - probability of leaving a state s within [0,t] is $1 - e^{-E(s) \cdot t}$
 - E(s) is the exit rate for state s
 - s is called absorbing if $E(s)=0$ (no outgoing transitions)
Race conditions (cont’d)

- **2. Which transition is taken from state \(s \)?**
 - the choice is *independent* of the time at which it occurs
 - e.g. if \(X_1 \sim \text{Exponential}(\lambda_1), \ X_2 \sim \text{Exponential}(\lambda_2) \)
 - then the probability that \(X_1 < X_2 \) is \(\lambda_1 / (\lambda_1 + \lambda_2) \)
 - more generally, the probability is given by...

- **The embedded DTMC:** \(\text{emb}(C) = (S, s_{\text{init}}, P^{\text{emb}(C)}, L) \)
 - state space, initial state and labelling as the CTMC
 - for any \(s, s' \in S \)

\[
P^{\text{emb}(C)}(s, s') = \begin{cases}
R(s, s')/E(s) & \text{if } E(s) > 0 \\
1 & \text{if } E(s) = 0 \text{ and } s = s' \\
0 & \text{otherwise}
\end{cases}
\]

- **Probability that next state from \(s \) is \(s' \) given by** \(P^{\text{emb}(C)}(s, s') \)
Two interpretations of a CTMC

• Consider a (non-absorbing) state $s \in S$ with multiple outgoing transitions, i.e. multiple $s' \in S$ with $R(s,s') > 0$

• 1. Race condition
 – each transition triggered after exponentially distributed delay
 • i.e. probability triggered before t time units: $1 - e^{-R(s,s') \cdot t}$
 – first transition triggered determines the next state

• 2. Separate delay/transition
 – remain in s for delay exponentially distributed with rate $E(s)$
 • i.e. probability of taking an outgoing transition from s within $[0,t]$ is given by $1 - e^{-E(s) \cdot t}$
 – probability that next state is s' is given by $P^{emb(C)}(s,s')$
 • i.e. $R(s,s')/E(s) = R(s,s') / \sum_{s' \in S} R(s,s')$
More on CTMCs…

• **Infinitesimal generator matrix** Q

$$Q(s, s') = \begin{cases} R(s, s') & \text{if } s \neq s' \\ - \sum_{s \neq s'} R(s, s') & \text{otherwise} \end{cases}$$

• **Alternative definition**: a CTMC is:

 – a family of random variables $\{X(t) \mid t \in \mathbb{R}_{\geq 0}\}$

 – $X(t)$ are observations made at time instant t

 – i.e. $X(t)$ is the state of the system at time instant t

 – which satisfies…

• **Memoryless (Markov property)**

$$\Pr(X(t_{k+1})=s_{k+1} \mid X(t_k)=s_k, \ldots, X(t_0)=s_0) = \Pr(X(t_{k+1})=s_{k+1} \mid X(t_k)=s_k)$$
Simple CTMC example...

\[C = (S, s_{\text{init}}, R, L) \]

\[S = \{s_0, s_1, s_2, s_3\} \]

\[s_{\text{init}} = s_0 \]

\[AP = \{\text{empty, full}\} \]

\[L(s_0) = \{\text{empty}\}, \quad L(s_1) = L(s_2) = \emptyset \quad \text{and} \quad L(s_3) = \{\text{full}\} \]

\[
R = \begin{bmatrix}
0 & 3/2 & 0 & 0 \\
3 & 0 & 3/2 & 0 \\
0 & 3 & 0 & 3/2 \\
0 & 0 & 3 & 0
\end{bmatrix}
\]

\[
P_{\text{emb}(C)} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
2/3 & 0 & 1/3 & 0 \\
0 & 2/3 & 0 & 1/3 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
Q = \begin{bmatrix}
-3/2 & 3/2 & 0 & 0 \\
3 & -9/2 & 3/2 & 0 \\
0 & 3 & -9/2 & 3/2 \\
0 & 0 & 3 & -3
\end{bmatrix}
\]

- Transition rate matrix
- Embedded DTMC
- Infinitesimal generator matrix
Example 2

- 3 machines, each can fail independently
 - delay modelled as exponential distributions
 - failure rate λ, i.e. mean-time to failure (MTTF) = $1 / \lambda$

- One repair unit
 - repairs a single machine at rate μ (also exponential)

- State space:
 - $S = \{s_i\}_{i=0..3}$ where s_i indicates i machines operational
Example 3

- Chemical reaction system: two species A and B
- Two reactions:
 \[A + B \rightleftharpoons_{k_2} AB \]
 \[A \rightarrow_{k_3} \]
 - reversible reaction under which species A and B bind to form AB (forwards rate = \(|A| \cdot |B| \cdot k_1\), backwards rate = \(|AB| \cdot k_2\))
 - degradation of A (rate \(|A| \cdot k_3\))
 - \(|X|\) denotes number of molecules of species X
- CTMC with state space
 - (\(|A|, |B|, |AB|\))
 - initially (2,2,0)
Paths of a CTMC

• An infinite path ω is a sequence $s_0t_0s_1t_1s_2t_2...$ such that
 - $R(s_i,s_{i+1}) > 0$ and $t_i \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$
 - t_i denotes the amount of time spent in s_i
• or a sequence $s_0t_0s_1t_1s_2t_2...t_{k-1}s_k$ such that
 - $R(s_i,s_{i+1}) > 0$ and $t_i \in \mathbb{R}_{>0}$ for all $i<k$
 - where s_k is absorbing (i.e. $R(s_k,s') = 0$ for all $s' \in S$)
 - i.e. it remains in state s_k indefinitely

• Path(s) denotes all infinite paths starting in state s
• Further notation:
 - $\text{time}(\omega,j) =$ amount of time spent in the jth state, i.e. t_j
 - $\omega@t =$ state occupied at time t
 - see e.g. [BHHK03, KNP07a] for precise definitions
Recall: Probability spaces

• A σ-algebra (or σ-field) on Ω is a set Σ of subsets of Ω closed under complementation and countable union, i.e.:
 – if $A \in \Sigma$, the complement $\Omega \setminus A$ is in Σ
 – if $A_i \in \Sigma$ for $i \in \mathbb{N}$, the union $\bigcup_i A_i$ is in Σ
 – the empty set \emptyset is in Σ

• Elements of Σ are called measurable sets or events

• Theorem: For any set F of subsets of Ω, there exists a unique smallest σ-algebra on Ω containing F

• Probability space (Ω, Σ, \Pr)
 – Ω is the sample space
 – Σ is the set of events: σ-algebra on Ω
 – $\Pr : \Sigma \to [0,1]$ is the probability measure:
 \[
 \Pr(\Omega) = 1 \text{ and } \Pr(\bigcup_i A_i) = \sum_i \Pr(A_i) \text{ for countable disjoint } A_i
 \]
Probability space

- **Sample space**: Path(s) (set of all inf. paths from a state s)
- **Events**: sets of infinite paths
- **Basic events**: cylinders
 - cylinders = sets of paths with common finite prefix
 - include **time intervals** in cylinders

- **Finite prefix is a sequence** $s_0,l_0,s_1,l_1,...,l_{n-1},s_n$
 - $s_0,s_1,s_2,...,s_n$ sequence of states where $R(s_i,s_{i+1})>0$ for $i<n$
 - $l_0,l_1,l_2,...,l_{n-1}$ sequence of non-empty intervals of $\mathbb{R}_{\geq 0}$

- **Cylinder** $\text{Cyl}(s_0,l_0,s_1,l_1,...,l_{n-1},s_n)$ is the set of infinite paths:
 - $\omega(i)=s_i$ for all $i \leq n$ and $\text{time}(\omega,i) \in l_i$ for all $i < n$
Probability space

- Define probability measure over cylinders inductively

- $\Pr_s(Cyl(s)) = 1$

- $\Pr_s(Cyl(s, l, s_1, l_1, \ldots, l_{n-1}, s_n, l', s'))$ equals:

$$\Pr_s(Cyl(s, l, s_1, l_1, \ldots, l_{n-1}, s_n)) \cdot \text{P}^{\text{emb}(C)}(s_n, s') \cdot \left(e^{-E(s_n) \cdot \inf l'} - e^{-E(s_n) \cdot \sup l'} \right)$$

- probability of transition from s_n to s' (defined using embedded DTMC)

- probability of time spent in state s_n is within the interval l'
Probability space – Example

- Probability of leaving the initial state s_0 and moving to state s_1 within the first 2 time units of operation

- Cylinder $\text{Cyl}(s_0,(0,2],s_1)$

- $\text{Pr}_{s_0}(\text{Cyl}(s_0,(0,2],s_1))$

\[
= \text{Pr}_{s_0}(\text{Cyl}(s_0)) \cdot \text{P}^{\text{emb}(C)}(s_0,s_1) \cdot (e^{-E(s_0) \cdot 0} - e^{-E(s_0) \cdot 2})
\]

\[
= 1 \cdot \text{P}^{\text{emb}(C)}(s_0,s_1) \cdot (e^{-E(s_0) \cdot 0} - e^{-E(s_0) \cdot 2})
\]

\[
= 1 \cdot 1 \cdot (e^{-3/2 \cdot 0} - e^{-3/2 \cdot 2})
\]

\[
= 1 - e^{-3}
\]

\[
\approx 0.95021
\]
Probability space

- Probability space \((\text{Path}(s), \Sigma_{\text{Path}(s)}, \Pr_s)\) (see [BHHK03])

- Sample space \(\Omega = \text{Path}(s)\)
 - i.e. all infinite paths

- Event set \(\Sigma_{\text{Path}(s)}\)
 - least \(\sigma\)-algebra on \(\text{Path}(s)\) containing all cylinders sets \(\text{Cyl}(s_0, I_0, \ldots, I_{n-1}, s_n)\) where:
 - \(s_0, \ldots, s_n\) ranges over all state sequences with \(R(s_i, s_{i+1}) > 0\) for all \(i\)
 - \(I_0, \ldots, I_{n-1}\) ranges over all sequences of non-empty intervals in \(\mathbb{R}_{\geq 0}\) (where intervals are bounded by rationals)

- Probability measure \(\Pr_s\)
 - \(\Pr_s\) extends uniquely from probability defined over cylinders
Probabilistic reachability

- Probabilistic reachability
 - the probability of reaching a target set $T \subseteq S$
 - measurability:
 - union of all basic cylinders $Cyl(s_0,(0,\infty),s_1,(0,\infty),\ldots,(0,\infty),s_n)$
 where $s_n \in T$
 - set of state sequences $s_0s_1\ldots s_n$ is countable

- Time–bounded probabilistic reachability
 - the probability of reaching a target set $T \subseteq S$ within t time units
 - measurability:
 - union of all basic cylinders $Cyl(s_0,l_0,s_1,l_1,\ldots,l_{n-1},s_n)$
 where $s_n \in T$ and $\sup(l_0)+\ldots+\sup(l_{n-1}) \leq t$
 - set of state sequences $s_0s_1\ldots s_n$ is countable
 - set of rational–bounded intervals is countable
Summing up…

- **Exponential distribution**
 - suitable for modelling failures, waiting times, reactions, ...
 - nice mathematical properties

- **Continuous–time Markov chains**
 - transition delays modelled as exponential distributions
 - race condition
 - embedded DTMC
 - generator matrix

- **Probability space over paths**
 - (untimed and timed) probabilistic reachability