Probabilistic Model Checking

Alessandro Abate

Lecture 4, p1: Linear-Time Properties
Linear-Time Properties

- consider non-blocking, finite TS
- recall notions of TS path, of TS trace, of reachability sets ($Paths(TS)$, $Reach(TS)$, $Traces(TS)$)
Linear-Time Properties

- consider non-blocking, finite TS
- recall notions of TS path, of TS trace, of reachability sets
 \((\text{Paths}(TS), \text{Reach}(TS), \text{Traces}(TS))\)

- linear-time properties specify traces that a TS should have
 (the admissible, desired behaviour of the TS)
- \((\text{LTL} \text{ is a logical formalism to express linear-time properties})\)

Definition
A linear-time (LT) property over the AP set is a subset of \((2^{AP})^\omega\).
Linear-Time Properties

- LT properties can then express requirements over TS traces, properties over all words of TS defined over AP

Definition
Consider a \(TS = (S, \rightarrow, I, AP, L) \) and let \(P \) be an LT-property over \(AP \). Then, \(TS \models P \) iff \(\text{Traces}(TS) \subseteq P \).
State \(s \in S \) satisfies \(P \), namely \(s \models P \), whenever \(\text{Traces}(s) \subseteq P \).
Linear-Time Properties

- LT properties can then express requirements over TS traces, properties over all words of TS defined over AP

Definition
Consider a \(TS = (S, \rightarrow, I, AP, L) \) and let \(P \) be an LT-property over \(AP \). Then, \(TS \models P \) iff \(\text{Traces}(TS) \subseteq P \).
State \(s \in S \) satisfies \(P \), namely \(s \models P \), whenever \(\text{Traces}(s) \subseteq P \).

- given a \(TS = (S, \rightarrow, I, AP, L) \), an LT property \(P \) may depend on symbols in \(AP' \subset AP \)
- given a path \(\pi = s_0s_1 \ldots \) of TS, we consider \(\text{Traces}_{AP'}(\pi) = (L(s_0) \cap AP')(L(s_1) \cap AP') \ldots \)
 \Rightarrow \(\text{Traces}_{AP'}(TS) \)
Linear-Time Properties: Example

- consider traffic light system, and associated TS model
- recall characterisation of $\text{Traces}(TS)$ over AP set
Linear-Time Properties: Example

- consider traffic light system, and associated TS model
- recall characterisation of $\text{Traces}(TS)$ over AP set
- $P = \text{“eventually, the green light is ON”}$ - does it hold?
Linear-Time Properties: Example

- consider traffic light system, and associated TS model
- recall characterisation of \(\text{Traces}(TS)\) over \(AP\) set
- \(P = \) “eventually, the green light is ON” - does it hold?
- \(P = \) “eventually, the red light is ON” - does it hold?
Trace Relationship and Linear-Time Properties

- compare two models TS, TS' (with same AP) via their traces
Trace Relationship and Linear-Time Properties

- compare two models TS, TS' (with same AP) via their traces

? trace equivalence: if they have the same traces, do they satisfy the same LT properties?

- if $TS \models P$, then $\text{Traces}(TS) \subseteq P$;
 since $\text{Traces}(TS) = \text{Traces}(TS')$, then $TS' \models P$
Trace Relationship and Linear-Time Properties

- compare two models TS, TS' (with same AP) via their traces

 - trace equivalence: if they have the same traces, do they satisfy the same LT properties?

 - if $TS \models P$, then $\text{Traces}(TS) \subseteq P$;
 since $\text{Traces}(TS) = \text{Traces}(TS')$, then $TS' \models P$

 - similarly, if $TS \not\models P$, then there is a trace in TS that is prohibited by P;
 then, since $\text{Traces}(TS) = \text{Traces}(TS')$, $TS' \not\models P$
Trace Relationship and Linear-Time Properties

- compare two models TS, TS' (with same AP) via their traces

 - trace equivalence: if they have the same traces, do they satisfy the same LT properties?

 - if $TS \models \mathcal{P}$, then $\text{Traces}(TS) \subseteq \mathcal{P}$;
 since $\text{Traces}(TS) = \text{Traces}(TS')$, then $TS' \models \mathcal{P}$

 - similarly, if $TS \not\models \mathcal{P}$, then there is a trace in TS that is prohibited by \mathcal{P};
 then, since $\text{Traces}(TS) = \text{Traces}(TS')$, $TS' \not\models \mathcal{P}$

- trace inclusion: $\text{Traces}(TS) \subseteq \text{Traces}(TS')$,
 TS is a correct implementation (a refinement) of TS'
 (TS' is an abstraction of TS)
Trace Relationship and Linear-Time Properties

Definition

TS and TS' are trace equivalent w.r.t. AP if

$$Traces_{AP}(TS) = Traces_{AP}(TS')$$

Theorem

$Traces(TS) = Traces(TS') \iff$
for any LT property P, $TS' \models P \iff TS \models P$
that is, iff TS and TS' satisfy the same set of LT properties

Theorem

$Traces(TS) \subseteq Traces(TS') \iff$
for any LT property P, $TS' \models P \Rightarrow TS \models P$
Trace Relationship and Linear-Time Properties

TS':

TS:

$\text{Traces}(TS) \subseteq \text{Traces}(TS')$
Linear-Time Properties: Invariants

- a given condition holds always (over entire reach space)

Definition

An LT property P over \mathcal{AP} is an invariant if there is a logical formula Φ over \mathcal{AP} such that

$$P = \left\{ A_0 A_1 A_2 \ldots \in (2^{\mathcal{AP}})^\omega \mid \forall j \geq 0, A_j \models \Phi \right\}$$

(Φ is called an invariant condition for P)

- $\mathcal{TS} \models P$ iff $\forall \pi \in \text{Paths}(\mathcal{TS}), \text{Trace}(\pi) \in P$
- $\mathcal{TS} \models P$ iff $\forall \pi \in \text{Paths}(\mathcal{TS}), \forall s \in \pi, L(s) \models \Phi$
- $\mathcal{TS} \models P$ iff $\forall s \in \text{Reach}(\mathcal{TS}), L(s) \models \Phi$

→ checking invariant via reachability analysis
Linear-Time Properties: Invariants

◮ $P = \text{“the traffic light is never simultaneously green and red”}$

◮ $\Phi = \neg red \lor \neg green$, so that

\[
P = \neg \diamond (red \land green) = \square (\neg red \lor \neg green)
\]

◮ $TS \models P$
Linear-Time Properties: Safety

- nothing bad ever happens

Definition

LT property P is a safety property if, for all words $\sigma \in (2^{AP})^\omega \setminus P$, there exists a finite prefix $\hat{\sigma}$ s.t.

$$P \cap \left\{ \sigma' \in (2^{AP})^\omega \mid \hat{\sigma} \text{ is a finite prefix of } \sigma' \right\} = \emptyset$$

$\hat{\sigma}$ is a bad prefix of P

- minimal bad prefix; set of bad prefixes $BadPref(P)$
- any invariant is a safety property
- however, not the opposite (logical formulae can only express state properties)
Linear-Time Properties: Safety

◮ $P = “a\ green\ light\ is\ always\ preceded\ by\ an\ amber\ one”$
◮ P is a safety property
◮ however, P is not an invariant
◮ (in this instance $TS \models P$)
Linear-Time Properties: Safety

- $P = \text{“a green light is always preceded by an amber one”}$
- P is a safety property
- however, P is not an invariant
- (in this instance $TS \models P$)
- can you find an LT property that is not a safety one?
Linear-Time Properties: Safety

Theorem
Consider TS and safety property P;
\[TS \models P \iff \text{Traces}_{\text{fin}}(TS) \cap \text{BadPref}(P) = \emptyset \]
(safety properties are requirements over finite traces)

Theorem
\[\text{Traces}_{\text{fin}}(TS) \subseteq \text{Traces}_{\text{fin}}(TS') \iff \]
for any safety property P, \(TS' \models P \Rightarrow TS \models P \)

Theorem
\[\text{Traces}_{\text{fin}}(TS) = \text{Traces}_{\text{fin}}(TS') \iff \]
for any safety property P, \(TS' \models P \iff TS \models P \)
that is, TS and TS' satisfy the same safety properties
Linear-Time Properties: Safety (alternative definition)

- For trace $\sigma \in (2^{AP})^\omega$,
 $$
 \text{pref}(\sigma) = \{ \hat{\sigma} \in (2^{AP})^* \mid \hat{\sigma} \text{ is a finite prefix of } \sigma \}
 $$

- For LT property P,
 $$
 \text{pref}(P) = \bigcup_{\sigma \in P} \text{pref}(\sigma)
 $$

- Closure of LT property P:
 $$
 \text{closure}(P) = \{ \sigma \in (2^{AP})^\omega \mid \text{pref}(\sigma) \subseteq \text{pref}(P) \}
 $$

Definition

Let P be an LT property over AP. Then P is a safety property iff $\text{closure}(P) = P$
Linear-Time Properties: Liveness

- something good eventually happens
- property does rules not out any finite prefix, namely finite traces cannot elucidate property, i.e. any finite prefix can be extended to satisfy property

Definition
LT property P over AP is a liveness property whenever
$\text{pref}(P) = (2^AP)^*$

- eventually; repeated eventually (infinitely often)
- duality of safety and liveness, or
 is there an LT property that is both safe and live?
Linear-Time Properties: Fairness

- used to exclude possible infinite behaviours
- employed to characterise liveness properties
- usually established fairness constraints
 1. unconditional fairness: “every transition is infinitely often taken”
 2. strong fairness: “if a transition is infinitely often enabled, then it is infinitely often taken”
 3. weak fairness: “if a transition is continuously enabled from a certain point in time, then it is infinitely often taken”
Today’s reading material

- Sections 3.2–3.5 of