Lecture 2
Discrete–time Markov Chains

Alessandro Abate

Department of Computer Science
University of Oxford
Probabilistic Model Checking

• Formal verification and analysis of systems that exhibit probabilistic behaviour
 – e.g. randomised algorithms/protocols
 – e.g. systems with failures/unreliability

• Based on the construction and analysis of precise mathematical models

• This lecture: discrete-time Markov chains
Overview

• Probability basics

• Discrete–time Markov chains (DTMCs)
 – definition, properties, examples

• Formalising path–based properties of DTMCs
 – probability space over infinite paths

• Probabilistic reachability
 – definition, computation

• Sources and further reading: Section 10.1 of [BK08]
Probability basics

• First, we need an experiment
 – The sample space Ω is the set of possible outcomes
 – An event is a subset of Ω, can form events $A \cap B$, $A \cup B$, $\Omega \setminus A$

• Examples:
 – toss a coin: $\Omega = \{H,T\}$, events: “H”, “T”
 – toss two coins: $\Omega = \{(H,H),(H,T),(T,H),(T,T)\}$, event: “at least one H”
 – toss a coin ∞–often: Ω is set of infinite sequences of H/T event: “H in the first 3 throws”

• Probability is:
 – $\Pr(\text{“H”}) = \Pr(\text{“T”}) = 1/2$, $\Pr(\text{“at least one H”}) = 3/4$
 – $\Pr(\text{“H in the first 3 throws”}) = 1 - 1/8 = 7/8$
Probability example

- Modelling a 6–sided die using a fair coin
 - algorithm due to Knuth/Yao:
 - start at 0, toss a coin
 - upper branch when H
 - lower branch when T
 - repeat until value chosen

- Is this algorithm correct?
 - e.g. probability of obtaining a 4?
 - obtain as disjoint union of events
 - THH, TTTHH, TTTTTTHH, ...
 - Pr("eventually 4")
 \[= (1/2)^3 + (1/2)^5 + (1/2)^7 + ... = 1/6\]
Example...

• Other properties?
 – “what is the probability of termination?”

• e.g. efficiency?
 – “what is the probability of needing more than 4 coin tosses?”
 – “on average, how many coin tosses are needed?”

• Probabilistic model checking provides a framework for these kinds of properties: we need to discuss
 – modelling languages
 – property specification languages
 – model checking algorithms, techniques and tools
Discrete–time Markov chains

• State–transition systems augmented with probabilities

• States
 – set of states representing possible configurations of the system being modelled

• Transitions
 – transitions between states model evolution of system’s state; occur in discrete time–steps

• Probabilities
 – probabilities of making transitions between states are given by discrete probability distributions

• Labels
Markov property

• If the current state is known (namely, “conditional on current state”), then future states of the system are independent of its past states

• i.e. the current state of the model contains all information that can influence the future evolution of the system

• also known as “memoryless-ness”
Simple DTMC example

- Modelling a very simple communication protocol
 - after one step, process starts trying to send a message
 - with probability 0.01, channel not ready so wait a step
 - with probability 0.98, send message successfully and stop
 - with probability 0.01, message sending fails, thus restart
Discrete–time Markov chains

- Formally, a DTMC D is a tuple (S, s_{init}, P, L) where:
 - S is a set of states (S is known as the “state space”)
 - $s_{init} \in S$ is the initial state
 - $P : S \times S \rightarrow [0, 1]$ is the transition probability matrix where $\sum_{s' \in S} P(s, s') = 1$ for all $s \in S$
 - $L : S \rightarrow 2^{AP}$ is function labelling states with atomic propositions (taken from a finite set AP)
Simple DTMC example

\[D = (S, s_{\text{init}}, P, L) \]

\[S = \{s_0, s_1, s_2, s_3\} \]
\[s_{\text{init}} = s_0 \]

\[P = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0.01 & 0.01 & 0.98 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \]

\[\text{AP} = \{\text{try, fail, succ}\} \]
\[L(s_0) = \emptyset, \]
\[L(s_1) = \{\text{try}\}, \]
\[L(s_2) = \{\text{fail}\}, \]
\[L(s_3) = \{\text{succ}\} \]
Some more terminology

• P is a stochastic matrix, meaning it satisfies:
 – \(P(s,s') \in [0,1] \) for all \(s,s' \in S \) and \(\sum_{s' \in S} P(s,s') = 1 \) for all \(s \in S \)

• A sub-stochastic matrix satisfies:
 – \(P(s,s') \in [0,1] \) for all \(s,s' \in S \) and \(\sum_{s' \in S} P(s,s') \leq 1 \) for all \(s \in S \)

• An absorbing state is a state \(s \) for which:
 – \(P(s,s) = 1 \) and \(P(s,s') = 0 \) for all \(s \neq s' \)
 – the transition from \(s \) to itself is sometimes called a self-loop

• Note: Since we assume \(P \) is stochastic…
 – every state has at least one outgoing transition
 – i.e. no deadlocks (in model checking terminology)
DTMCs: An alternative definition

- **Alternative definition**... a DTMC is:
 - a **family of random variables** \{ X(k) | k=0,1,2,... \}
 - where \(X(k) \) are r.v. values at discrete time steps
 - i.e. \(X(k) \) is the state of the system at time step \(k \)
 - which satisfies:

 - **The Markov property** ("memoryless-ness")
 - \(\Pr(X(k)=s_k \mid X(k-1)=s_{k-1}, \ldots, X(0)=s_0) = \Pr(X(k)=s_k \mid X(k-1)=s_{k-1}) \)
 - for a given current state, future states are independent of past

- **This allows us to adopt the “state-based” view presented so far (which is better suited to this context)**
Other assumptions made here

- **We consider time-homogenous DTMCs**
 - transition probabilities are independent of time step k:
 - $\Pr(X(k)=s_k \mid X(k-1)=s_{k-1}) = P(s_{k-1},s_k)
 - otherwise: time-inhomogenous (tricky instance)

- **We will (mostly) assume that the state space S is finite**
 - in general, S can be a countable set

- **Initial state $s_{\text{init}} \in S$ can be generalised…**
 - to an initial probability distribution $s_{\text{init}} : S \to [0,1]$

- **Transition probabilities are reals: $P(s,s') \in [0,1]$**
 - but for algorithmic purposes, are assumed to be rationals
DTMC example 2 – Coins and dice

• Recall Knuth/Yao’s die algorithm from earlier:

\[S = \{ s_0, s_1, \ldots, s_6, 1, 2, \ldots, 6 \} \]

\[S_{init} = s_0 \]

\[P(s_0, s_1) = 0.5 \]

\[P(s_0, s_2) = 0.5 \]

etc.

\[L(s_0) = \{init\} \]

etc.
• Zeroconf = “Zero configuration networking”
 – self-configuration for local, ad-hoc networks
 – automatic configuration of unique IP for new devices
 – simple; no DHCP, DNS, …

• Basic idea:
 – 65,024 available IP addresses (IANA-specified range)
 – new node picks address U at random
 – broadcasts “probe” messages: “Who is using U?”
 – a node already using U replies to the probe
 – in this case, protocol is restarted
 – messages may not get sent (transmission fails, host busy, …)
 – so: nodes send multiple (n) probes, waiting after each one
DTMC for Zeroconf

- $n=4$ probes, m existing nodes in network
- Probability of message loss: p
- Probability that new address is in use: $q = m/65024$
Properties of DTMCs

• **Path–based properties**
 – what is the probability of observing a particular behaviour (or class of behaviours)?
 – e.g. “what is the probability of throwing a 4?”

• **Transient properties**
 – probability of being in state s after t steps?

• **Steady state**
 – long–run probability of being in each state

• **Expectations**
 – e.g. “what is the average number of coin tosses required?”
DTMCs and paths

• A path in a DTMC represents an execution (i.e. one possible behaviour) of the system being modelled

• Formally:
 – infinite sequence of states \(s_0s_1s_2\ldots\) such that \(P(s_i,s_{i+1}) > 0, \forall i \geq 0\)
 – infinite unfolding of DTMC (no blocking conditions)

• Examples:
 – never succeeds: \((s_0s_1s_2)\omega\)
 – tries, waits, fails, retries, succeeds: \(s_0s_1s_1s_2s_0s_1(s_3)\omega\)

• Notation:
 – \(\text{Path}(s)\) = set of all infinite paths starting in state \(s\)
 – can also define finite-length paths:
 – \(\text{Path}_{\text{fin}}(s)\) = set of all finite paths starting in state \(s\)
Paths and probabilities

- **To reason (quantitatively) about this system**
 - need to define a **probability space over paths**

- **Intuitively**:
 - sample space: \(\text{Path}(s) = \text{set of all infinite paths from a state } s \)
 - events: sets of infinite paths from \(s \)
 - basic events: **cylinder sets** (or “cones”)
 - cylinder set \(\text{Cyl}(\omega) \), for a finite path \(\omega \)
 - = set of **infinite paths with the common finite prefix** \(\omega \)
 - for example: \(\text{Cyl}(ss_1s_2) \)
Probability spaces

1. Let Ω be an arbitrary non-empty sample set.

2. A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if $A \in \Sigma$, the complement $\Omega \setminus A$ is in Σ.
 - if $A_i \in \Sigma$ for $i \in \mathbb{N}$, the union $\bigcup_i A_i$ is in Σ.
 - the empty set \emptyset is in Σ.

3. Elements of Σ are called measurable sets or events.

4. Theorem: For any family F of subsets of Ω, there exists a unique smallest σ-algebra on Ω containing F.

21
Probability spaces

- Probability space \((\Omega, \Sigma, \Pr)\)
 - \(\Omega\) is the sample space
 - \(\Sigma\) is the set of events: \(\sigma\)-algebra on \(\Omega\)
 - \(\Pr: \Sigma \to [0,1]\) is the probability measure:
 \(\Pr(\Omega) = 1\) and \(\Pr(\bigcup_i A_i) = \sum_i \Pr(A_i)\) for countable disjoint \(A_i\)
Probability space – Simple example

- **Sample space** Ω
 - $\Omega = \{1,2,3\}$

- **Event set** Σ
 - e.g. powerset of Ω
 - $\Sigma = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$
 - (closed under complement/countable union, contains \emptyset)

- **Probability measure** Pr
 - e.g. $\text{Pr}(1) = \text{Pr}(2) = \text{Pr}(3) = 1/3$
 - $\text{Pr}(\{1,2\}) = 1/3 + 1/3 = 2/3$, etc.
Probability space – Simple example 2

• **Sample space** Ω
 - $\Omega = \mathbb{N} = \{0,1,2,3,4,...\}$

• **Event set** Σ
 - e.g. $\Sigma = \{\emptyset, \text{“odd”}, \text{“even”}, \mathbb{N}\}$
 - (closed under complement/countable union, contains \emptyset)

• **Probability measure** \Pr
 - e.g. $\Pr(\text{“odd”}) = 0.5$, $\Pr(\text{“even”}) = 0.5$
Probability space over paths

- **Sample space** $\Omega = \text{Path}(s)$
 - set of infinite paths with initial state s

- **Event set** $\Sigma_{\text{Path}(s)}$
 - the **cylinder set** $\text{Cyl}(\omega) = \{ \omega' \in \text{Path}(s) \mid \omega \text{ is prefix of } \omega' \}$
 - $\Sigma_{\text{Path}(s)}$ is the **least σ-algebra** on $\text{Path}(s)$ containing $\text{Cyl}(\omega)$ for all finite paths ω starting in s

- **Probability measure** \Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1…s_n$ as:
 - $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $P_s(\omega) = P(s,s_1) \cdot … \cdot P(s_{n-1},s_n)$ otherwise
 - define $\Pr_s(\text{Cyl}(\omega)) = P_s(\omega)$ for all finite paths ω
 - \Pr_s extends **uniquely** to a probability measure $\Pr_s : \Sigma_{\text{Path}(s)} \rightarrow [0,1]$

- **See** [KSK76] for further details
Paths and probabilities – Example

- Paths where sending fails immediately
 - $\omega = s_0s_1s_2$
 - $\text{Cyl}(\omega) =$ all paths starting with $s_0s_1s_2$...
 - $P_{s_0}(\omega) = P(s_0, s_1) \cdot P(s_1, s_2)$
 $= 1 \cdot 0.01 = 0.01$
 - $Pr_{s_0}(\text{Cyl}(\omega)) = P_{s_0}(\omega) = 0.01$

- Paths which are eventually successful and with no failures
 - $\text{Cyl}(s_0s_1s_3) \cup \text{Cyl}(s_0s_1s_1s_3) \cup \text{Cyl}(s_0s_1s_1s_1s_3) \cup ...$
 - $Pr_{s_0}(\text{Cyl}(s_0s_1s_3) \cup \text{Cyl}(s_0s_1s_1s_3) \cup \text{Cyl}(s_0s_1s_1s_1s_3) \cup ...)$
 $= P_{s_0}(s_0s_1s_3) + P_{s_0}(s_0s_1s_1s_3) + P_{s_0}(s_0s_1s_1s_1s_3) + ...$
 $= 1 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.01 \cdot 0.98 + ...$
 $= 0.9898989898...$
 $= 98/99$
Reachability

• Key property: probabilistic reachability
 – probability of a path reaching a state in some target set $T \subseteq S$
 – e.g. “probability of the algorithm terminating successfully?”
 – e.g. “probability that an error occurs during execution?”

• Dual of reachability: invariance
 – probability of remaining within some class of states
 – $\Pr(\text{"remain in set of states } T\text{"}) = 1 - \Pr(\text{"reach set } S \setminus T\text{"})$
 – e.g. “probability that an error never occurs”

• We will also consider other variants of reachability
 – time-bounded, constrained (“until”), ...
Reachability probabilities

- Formally: \(\text{ProbReach}(s, T) = \Pr_s(\text{Reach}(s, T)) \)
 - where \(\text{Reach}(s, T) = \{ s_0s_1s_2 \ldots \in \text{Path}(s) \mid s_i \text{ in } T \text{ for some } i \} \)

- Is \(\text{Reach}(s, T) \) measurable for any \(T \subseteq S \)? Yes...
 - \(\text{Reach}(s, T) \) is the union of all basic cylinders \(\text{Cyl}(s_0s_1\ldots s_n) \) where \(s_0s_1\ldots s_n \) in \(\text{Reach}_{\text{fin}}(s, T) \)
 - \(\text{Reach}_{\text{fin}}(s, T) \) contains all finite paths \(s_0s_1\ldots s_n \) such that:
 - \(s_0=s, s_0,\ldots, s_{n-1} \notin T, s_n \in T \) (reaches \(T \) first time)
 - set of such finite paths \(s_0s_1\ldots s_n \) is countable

- Probability
 - in fact, the above is a disjoint union
 - so probability obtained by simply summing...
Computing reachability probabilities

- Compute as (infinite) sum...

\[\Sigma_{s_0, \ldots, s_n \in \text{Reachfin}(s, T)} \Pr_{s_0}(Cyl(s_0, \ldots, s_n)) = \Sigma_{s_0, \ldots, s_n \in \text{Reachfin}(s, T)} P(s_0, \ldots, s_n) \]

- Example:
 - \(\text{ProbReach}(s_0, \{4\}) \)

```
\begin{align*}
\text{ProbReach}(s_0, \{4\}) &= \Pr_{s_0}(\text{Reach}(s_0, \{4\})) \\
&= \frac{1}{6}
\end{align*}
```
Computing reachability probabilities

- Compute as (infinite) sum...

\[\sum_{s_0, \ldots, s_n \in \text{Reachfin}(s, T)} \Pr_{s_0}(\text{Cyl}(s_0, \ldots, s_n)) \]

\[= \sum_{s_0, \ldots, s_n \in \text{Reachfin}(s, T)} P(s_0, \ldots, s_n) \]

- Example:
 - \(\Pr_{s_0}(\text{Reach}(s_0, \{4\})) \)
 - \(\Pr_{s_0}(\text{Reach}(s_0, \{4\})) \)
 - Finite path fragments:
 - \(s_0(s_2s_6)^n s_2s_54 \) for \(n \geq 0 \)
 - \(P_{s_0}(s_0s_2s_54) + P_{s_0}(s_0s_2s_6s_2s_54) + P_{s_0}(s_0s_2s_6s_2s_6s_2s_54) + \ldots \)
 - \(= (1/2)^3 + (1/2)^5 + (1/2)^7 + \ldots = 1/6 \)
Computing reachability probabilities

- `ProbReach(s_0, \{s_6\})`: let us compute as infinite sum ...
 - However, this doesn’t scale...
Computing reachability probabilities

- Alternative: derive a linear equation system
 - solve for all states simultaneously
 - i.e. compute vector \(\text{ProbReach}(T) \)

- Let \(x_s \) denote \(\text{ProbReach}(s, T) \)

- Solve:

\[
x_s = \begin{cases}
1 & \text{if } s \in T \\
0 & \text{if } T \text{ is not reachable from } s \\
\sum_{s' \in S} P(s, s') \cdot x_{s'} & \text{otherwise}
\end{cases}
\]
Exercise

- Compute ProbReach(s₀, {4})
Unique solutions

• Why the need to identify states that cannot reach T?

• Consider this simple DTMC:
 – compute probability of reaching $\{s_0\}$ from s_1
 – linear equation system: $x_{s_0} = 1$, $x_{s_1} = x_{s_1}$
 – multiple solutions: $(x_{s_0}, x_{s_1}) = (1, p)$ for any $p \in [0, 1]$
Computing reachability probabilities

• Another alternative: least fixed point characterisation

• Consider functions of the form:
 \[F : [0,1]^{\mathcal{S}} \rightarrow [0,1]^{\mathcal{S}} \]

• And define:
 \[y \leq y' \text{ iff } y(s) \leq y'(s) \text{ for all } s \]

• \(y \) is a fixed point of \(F \) if \(F(y) = y \)

• A fixed point \(x \) of \(F \) is the least fixed point of \(F \) if \(x \leq y \) for any other fixed point \(y \)
Least fixed point

- **ProbReach(T)** is the least fixed point of the function F:

 \[F(y)(s) = \begin{cases}
 1 & \text{if } s \in T \\
 \sum_{s' \in S} P(s, s') \cdot y(s') & \text{otherwise.}
 \end{cases} \]

- This yields a simple iterative algorithm to approximate **ProbReach(T)**:

 - \(x^{(0)} = 0 \) (i.e. \(x^{(0)}(s) = 0 \) for all s)
 - \(x^{(n+1)} = F(x^{(n)}) \)
 - \(x^{(0)} \leq x^{(1)} \leq x^{(2)} \leq x^{(3)} \leq \ldots \)
 - **ProbReach(T)** = \(\lim_{n \to \infty} x^{(n)} \)

 In practice, terminate when for example:

 \[\max_s \left| x^{(n+1)}(s) - x^{(n)}(s) \right| < \varepsilon \]

 for some user-defined tolerance value \(\varepsilon \)
Least fixed point

• Expressing ProbReach as a least fixed point...

 – corresponds to solving the linear equation system using the power method
 • other iterative methods exist (see later)
 • power method is guaranteed to converge

 – generalises non-probabilistic reachability

 – can be generalised to:
 • constrained reachability (see PCTL “until”)
 • reachability for Markov decision processes

 – also yields step-bounded reachability probabilities…
Bounded reachability probabilities

- Probability of reaching T from s within k steps

- Formally: \(\text{ProbReach}^{\leq k}(s, T) = \Pr_s(\text{Reach}^{\leq k}(s, T)) \) where:
 - \(\text{Reach}^{\leq k}(s, T) = \{ s_0s_1s_2 \ldots \in \text{Path}(s) \mid s_i \text{ in } T \text{ for some } i \leq k \} \)

- \(\text{ProbReach}^{\leq k}(T) = x^{(k+1)} \) from the previous fixed point
 - which gives us...

\[
\text{ProbReach}^{\leq k}(s, T) = \begin{cases}
1 & \text{if } s \in T \\
0 & \text{if } k = 0 \text{ & } s \notin T \\
\sum_{s' \in S} P(s, s') \cdot \text{ProbReach}^{\leq k-1}(s', T) & \text{if } k > 0 \text{ & } s \notin T
\end{cases}
\]
(Bounded) reachability

• \(\text{ProbReach}(s_0, \{1,2,3,4,5,6\}) = 1 \)

• \(\text{ProbReach}^{\leq k}(s_0, \{1,2,3,4,5,6\}) = \ldots \)

![Diagram showing reachability probabilities and states]
Summing up…

• Discrete–time Markov chains (DTMCs)
 – state–transition systems augmented with probabilities

• Formalising path–based properties of DTMCs
 – probability space over infinite paths

• Probabilistic reachability
 – infinite sum
 – linear equation system
 – least fixed point characterisation
 – bounded reachability