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What is MATLAB ?
MATLAB (MATrix LABoratory) is a:
− Numerical computing environment.
− Programming language.

MATLAB easily allows:
− Matrix manipulations.

− Data analysis and visualization.
− Implementation of algorithms.

− Interfacing with other programming languages 
(Java, C/C++/C#, Fortran, Python).
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What is MATLAB ?
MATLAB is primarily intended for numerical 
computing, not symbolic computing (such as the 
Mathematica or Maple environments) (1).

The additional Simulink package (tightly integrated 
with MATLAB) allows to model and simulate 
dynamical systems by using a block-diagram-based 
graphical interface.

(1) Limited support for symbolic computation is provided with the optional 
Symbolic Math Toolbox (based on the MuPAD symbolic engine)
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What is MATLAB ?
The MATLAB programming language: 
– supports multiple programming paradigms, e.g. imperative, 

procedural, object-oriented, functional.

– operates primarily on matrices.

– is mainly an interpreted (scripting) language (1).

The simplest type of MATLAB program is a text file 
(MATLAB script) containing a sequence of 
MATLAB commands and functions.

(1) Compilation of MATLAB scripts is also possible by using the MATLAB Compiler.
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Why to use MATLAB ?
�
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Over 3 millions users worldwide (industry & academia).

�

<latexit sha1_base64="eNVJKq9Uau/jHL5fylM7vVPgcG4=">AAACC3icbVDLSsNAFJ3UV62vqks3wSK4KkkR1F3RjTsrNG2hCWUyvWmHzmTCzEQpoZ/g1q3+gztx60f4C36F0zYL23rgwuGce7mHEyaMKu0431ZhbX1jc6u4XdrZ3ds/KB8etZRIJQGPCCZkJ8QKGI3B01Qz6CQSMA8ZtMPR7dRvP4JUVMRNPU4g4HgQ04gSrI3k+xFuDlMeqnsv6ZUrTtWZwV4lbk4qKEejV/7x+4KkHGJNGFaq6zqJDjIsNSUMJiU/VZBgMsID6BoaYw4qyGaZJ/aZUfp2JKSZWNsz9e9FhrlSYx6aTY71UC17U/E/r5vq6CrIaJykGmIyfxSlzNbCnhZg96kEotnYEEwkNVltMsQSE21qWvgyDYafQAkOE1OOu1zFKmnVqu5F9fqhVqnf5DUV0Qk6RefIRZeoju5QA3mIoAS9oFf0Zj1b79aH9TlfLVj5zTFagPX1C58onEs=</latexit>

Large collection of readily available functions to 
perform several computational tasks:

− Built-in functions.
− Functions included in optional toolboxes.
− Functions provided by large user community

( see https://www.mathworks.com/matlabcentral/ ).

�
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Easy to learn the basics; it allows to quickly explore 
several alternatives to get a solution.
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Preliminaries
A MATLAB Total Academic Headcount (TAH) License is 
available for all the students and employees of University 
of Padova.

The license allows to install a full copy of MATLAB and 
companion toolboxes on personally-owned computers.

Instructions for downloading and installing the software 
can be found here:
https://www.csia.unipd.it/servizi/servizi-utenti-
istituzionali/contratti-software-e-licenze/matlab
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Desktop Basics
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Current Folder panel:
Access to files

Command Window:
• Interactive mode: enter commands at MATLAB prompt (>>).
• Non-interactive mode: launch MATLAB scripts.

Workspace panel:
Explore data defined 
in memory (workspace).

Command History panel:
Review previously entered 
commands.

Change the desktop layout 
by using this button.



Command Window Basics
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>> MATLAB prompt.
>> <command> ↩ Executes a command and prints the output 

on the command window.

>> <command>; ↩ Executes a command, without printing the 
output on the command window.

>> <command>; <command>; ↩ Enters multiple commands on a single 
prompt; no output shown on the command 
window.

>> <command>, <command> ↩ Enters multiple commands on a single 
prompt; the output of each command is 
shown on the command window.

>> <long command line> … ↩
<continuation of command line> ↩

Continue a statement to the next line using 
ellipsis (…).

>> ⬆ ⬇ Use up and down arrow keys to recall 
previously entered commands.



Online Help
From Command Window:

From toolbar:
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>> help <name> ↩ Displays the help text for <name> in the 
Command Window.

>> doc <name> ↩ Displays the documentation for <name> in 
the Help Browser.

>> doc ↩ Opens the Help Browser.
>> lookfor <keyword> ↩ Searches for the specified keyword in the 

online help.
>> demo ↩ Displays a list of features MATLAB and 

Simulink examples in the Help browser.



Help Browser
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Workspace
The workspace is the area of memory containing the 
variables created and used in a MATLAB session.

To define a variable in the workspace:

ans (short for answer) is a special variable 
containing the result of the last computation.
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>> a = 1 ↩ Note: the assignment operator is denoted with =

>> 1+1 ↩ 
   ans = 
   2

If the result of an operation is not assigned to a variable, 
then it is assigned to the special variable ans.



Workspace
Variables in the workspace are dynamically 
allocated; no data type declaration is required.

Variables names:
− start with a letter, followed by letters, digits, or underscores.
− must be different from MATLAB keywords.
− should be different from names of already existing 

commands or functions (avoid name shadowing).

MATLAB is case sensitive (e.g. a and A are 
different variables).
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Workspace Management
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>> who Lists the variables in the current workspace.

>> whos Lists the variables in the current workspace, 
including size, type, …

>> clear <variable> Removes a variable from workspace.

>> clear all Removes all the variables from workspace.

>> save <filename> <variables list> Stores variables into a MATLAB formatted 
binary data file (MAT-file, extension .dat).

>> save <filename> Stores all the workspace variables into a MAT-
file

>> load <filename> Loads variables from a MAT-file into the 
workspace.

>> load <filename> <variables list> Loads selected variables from a MAT-file into 
the workspace.
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Workspace Management
Example

>> a=1; b=2; c=3; 
>> A=4; B=5; C=6; 

>> save UppercaseVars A B C 
>> save LowercaseVars a b c 

>> clear all 
>> who 

>> load UppercaseVars 
>> who

Your variables are:

A  B  C 

>> load LowercaseVars
>> whos

⋮

⋮

Your variables are:

A  B  C  a  b  c 

>> clear a b c
>> whos

Your variables are:

A  B  C 

>> load LowercaseVars a
>> who

Your variables are:

A  B  C  a



Workspace Management
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The workspace can be also managed from the Workspace panel
(right-click on it to access a pop-up menu with several options).



Working Directory Management
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>> pwd Print working directory (MATLAB current folder).

>> dir <path>, ls <path> List content of directory specified by <path>.

>> what <path> List MATLAB files (e.g. .m, .mat, …) in directory 
specified by <path>.

>> which <item> Locate functions and files specified by <item>.

>> cd <path> Change current directory to <path>.

>> copyfile <source> <dest> Copy file or directory <source> to <dest>.

>> delete <path> Delete the file specified by <path>.

>> mkdir <path>
>> rmdir <path>

Make/Remove the directory specified by <path>.

>> !<cmd> (or system(<cmd>)) Execute operating system command <cmd>
(Shell escape function). 



Working Directory Management
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Example

>> pwd

ans =
 '/Users/riccardo/Documents/MATLAB’

>> ls
Examples SupportPackages
UppercaseVars.mat
LowercaseVars.mat Toolboxes

>> what

MAT-files in the current folder 
/Users/riccardo/Documents/MATLAB

LowercaseVars  UppercaseVars 

⋮

⋮

>> delete LowercaseVars.mat
>> what

MAT-files in the current folder 
/Users/riccardo/Documents/MATLAB

UppercaseVars  



Working Directory Management
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The working directory can be also managed from the Current Folder panel
(right-click on it to access a pop-up menu with several options).



Representation of real numbers
Real numbers are internally represented with the 
finite set of double-precision floating-point numbers 
(IEEE 754 format).
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realmax, realmin Largest and smallest IEEE double-precision positive 
floating-point number.

Inf IEEE arithmetic representation for positive infinity. 
Every value above realmax is represented with ±Inf; 
every value below realmin is represented with 0.

NaN IEEE arithmetic representation of Not-a-Number. 
This value is used for operations which have an undefined 
result (e.g. 0/0, ∞/∞, …).

eps Floating-point relative accuracy. It is the distance from 1.0 
to the next larger double-precision number. Its value is 2-52.



Representation of real numbers
When representing real numbers, distinction is made 
between internal and external format:

⤷ Internal format: used to perform computations.
It is always the double-precision format.

⤷ External format: used to display the numeric 
values on the Command Window. 
It can be controlled with the format command. 
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Representation of real numbers

Introduction to MATLAB 20

External format selection

format long Long, fixed-decimal format with 15 digits after the decimal pt. 3.141592653589793

format short Short, fixed-decimal format with 4 digits after the decimal pt. 3.1416

format longE Long scientific notation with 15 digits after the decimal pt. 3.141592653589793e+00

format shortE Short scientific notation with 4 digits after the decimal pt. 3.1416e+00

format longG More compact format between long and longE. 3.14159265358979

format shortG More compact format between short and shortE. 3.1416

format longEng Long engineering notation with 15 digits after the decimal pt. 
Exponent is a multiple of 3.

3.14159265358979e+000

format shortEng Short engineering notation with 4 digits after the decimal pt.
Exponent is a multiple of 3.

3.1416e+000

format rat Ratio of small integers. 355/113

format compact Suppress blank lines to show more output on a single screen.

format loose Add blank lines to make output more readable.



Representation of real numbers
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Example

>> format short
>> a = 1/7

a = 0.1429

>> format compact
>> a 

a = 0.1429

>> format long
>> a

a = 0.142857142857143

>> format shortE
>> a

a = 1.4286e-01
⋮

⋮

>> format shortEng
>> a

a = 142.8571e-003

>> format loose
>> a

a = 142.8571e-003

>> format rat
>> a

a = 1/7 



Representation of complex numbers
Complex numbers are represented by a pair of 
double-precision floating-point numbers (real and 
imaginary parts).
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1i, 1j Imaginary unit. Variables i and j can 
also be used, but:
• numerical robustness in complex 

arithmetic is reduced.
• can be easily overridden by user-

defined variables.
<complex num> = <real part> + 1i*<imag part> Algebraic (cartesian) notation.

<complex num> = <mag> * exp(1i*<arg>) Polar notation.

<complex num> = complex(<real part>,<imag part>) Using complex function.



Representation of complex numbers
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Example

>> format short
>> a = 1+1i

a =

   1.0000 + 1.0000i

>> b = complex(-2,3)

b =

  -2.0000 + 3.0000i

>> c = 2*exp(1i*pi/2)

c =

   0.0000 + 2.0000i

⋮

⋮
>> d = 1+i

d =

   1.0000 + 1.0000i

>> i = 1;
>> e = 1+i

e =

     2

i and j also denote, by default, the imaginary unit; 
however, differently from the special quantities 1i 
and 1j, they can be assigned to different values, so 
that they no longer refer to the imaginary unit. 



Representation of vectors & matrices
Definition of vectors and matrices:
• Square brackets ([]): enclose the elements.
• Comma (,) or space : separate elements on the same row.
• Semicolon (;) : separates the rows.

Note: vectors are treated as single-column/single-row matrices.
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Row vector (1×m) >> A=[1 2 3] or >> A=[1, 2, 3]

Column vector (n×1) >> A=[1; 2; 3] or 
>> A=[1 ↩
2 ↩
3]

Matrix (n×m) >> A=[1 2 3; 4 5 6] or >> A=[1, 2, 3; 4, 5, 6] 
or
>> A=[1 2 3; ↩
4 5 6]



Representation of vectors & matrices
Definition of matrices with particular structure:
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[] Empty matrix.
eye(n) 𝑛×𝑛 identity matrix.
zeros(n,m) 𝑛×𝑚 matrix with elements equal to 0.
ones(n,m) 𝑛×𝑚 matrix with elements equal to 1.
diag(<vector>) Diagonal matrix with elements of <vector> on 

the leading diagonal.

<min_val>:<max_val> Row vector with increasing elements from 
<min_val> to <max_val>, with incremental 
step equal to 1.

<min_val>:<step>:<max_val> Row vector with increasing elements from 
<min_val> to <max_val>, with incremental 
step equal to <step>.



Representation of vectors & matrices
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linspace(<min_val>, 
<max_val>, 
<num_of_elements>)

Vector of <num_of_elements> elements evenly 
spaced from <min_val> to <max_val>.

logspace(<min_val>, 
<max_val>, 
<num_of_elements>)

Vector of <num_of_elements> elements 
logarithmically spaced (base 10) from 
<min_val> to <max_val>.

rand(n,m) 𝑛×𝑚 matrix with uniformly-distributed random 
real numbers in the interval (0,1).

randn(n,m) 𝑛×𝑚 matrix with normally-distributed random real 
numbers (mean = 	0, variance = 	1).

randi(N,n) 𝑛×𝑛 matrix with uniformly-distributed random 
integer numbers in the interval [1, 𝑁].

toeplitz, magic, hilb, 
invhilb, vander, pascal, 
hadamard, hankel, 
rosser, wilkinson, …

Matrices with special structure (consult online 
documentation).



Representation of vectors & matrices
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Example
>> A = ones(1,3)

A =
     1     1     1

>> B = zeros(2,1) 

B =
     0
     0

>> C = diag([2 3]) 

C =
     2     0
     0     3

⋮

⋮
>> a = 1:5 

a =
     1     2     3     4     5

>> b = 1:2:10

b =
     1     3     5     7     9

>> C = linspace(-1,1,4)

C =
   -1.0000  -0.3333  0.3333  1.0000

>> D = randi(10, 1, 5)

D =
     9     7     4    10     1



Array Indexing
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A(i,j) Element at 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of matrix A.
Note: row/column indexes start from 1 (not 0 !).

A(i,:) 𝑖𝑡ℎ row of matrix A.
A(:,j) 𝑗𝑡ℎ column of matrix A.
A(<vector of row indexes>, 
<vector of column indexes>)

Submatrix of A composed by elements located at 
rows indexed by <vector of row indexes>, and 
columns indexed by <vector of column indexes>.

Note: the vectors of row/column indexes can be 
generated with the notation:

<min_val>:<step>:<max_val>

end can be used to index the last row/column. 
length(X) Length of vector X.

[N,M]=size(X) Size (rows N and columns M) of matrix X.



Array Indexing
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Example
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

     1     2     3
     4     5     6
     7     8     9

>> A(2,:)

ans =
     4     5     6

>> A([1 3], [2 3])

ans =

     2     3
     8     9

⋮

⋮
>> A(1:2,:)

ans =

     1     2     3
     4     5     6

>> size(A)

ans =

     3     3

>> length(A(1,:))

ans =

     3



Dynamic Resizing
Size of vectors and matrices is dynamically (i.e. 
on-the-fly) adjusted when needed.
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If A has not been previously defined …
>> A(2,3)=1 … creates a 2×3 matrix with element (2,3) equal 

to 1, and the remaining to 0.

If A is a 2×2 matrix …
>> A(2,3)=1 … adds an extra column to A, with bottom 

element equal to 1, and the remaining to 0.

If A is a 2×2 matrix and B a 2×3 matrix…
>> A=[A,B] … resizes A to 2×5 matrix,  whose columns are 

those of the original A, followed by those of B.

If A is a 2×2 matrix and B a 3×2 matrix…
>> A=[A;B] … resizes A to 5×2 matrix, whose rows are those 

of the original A, followed by those of B.



Representation of strings
Strings are row vectors of characters.
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’a’ A character is defined by enclosing it within 
single quotes.

’abcd’ A string is defined by enclosing its characters 
within single quotes.

[’a’,’b’,’c’,’d’] A string can be alternatively defined as a row 
vector of characters.

>> s=’abc’;
>> s(2)=’a’; s(3)=’’;
>> s 
s = 
   ’aa’

String characters can be indexed as elements of 
conventional arrays.

>> s1=’abc’; s2=’def’;
>> s=[s1,s2]
s = 
   ’abcdef’

Strings concatenation is performed as a 
concatenation of conventional row vectors.



Representation of polynomials
Polynomials are represented as row vectors 
containing coefficients ordered by descending 
powers of the independent variable.
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>> p = [2, 0, -1, 3]; Representation of the polynomial:

𝑝 𝑥 = 2𝑥0 + 0𝑥1 − 𝑥 + 3



Representation of boolean values
Boolean variables are called logical variables in 
MATLAB.
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>> a=true
a =
  logical
  1

>> b=false
b =
  logical
  0

A logical variable can assume only the value true 
or false (predefined keywords for logical(1) 
and logical(0)).

>> logical([0,1,2])
ans =
    1×3 logical array
      0  1  1

Any nonzero numerical value is casted to logical true 
when using logical(…).



Struct arrays
A structure array (struct) is a data type that 
groups related data using data containers 
called fields.

Each field can contain any type of data; use the 
“dot-notation” to access the data in a field:
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>> student.firstName = ’Charlie’;
>> student.lastName = ’Brown’;
>> student.age = 8;

student is a struct with 2 string 
fields (firstName, lastName) 
and a numeric field (age).



Operations with matrices
Matrix addition and subtraction:
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>> A = [0 1; 2 3]; 
>> B = ones(2,2); 
>> A+B
ans =

1 2 
3 4 

Operators + (plus) and – (minus) are 
used to add and subtract matrices of the 
same size.

>> A+1 
ans = 

1 2 
3 4 

If one of the operands is a scalar, then 
the same operation is repeated for each 
element of the other operand.

>> minus(1,B) 
ans = 

0 0 
0 0 

(Rarely used) plus and minus are the 
function equivalents to operators + & -.



Operations with matrices
Matrix multiplication (row-by-column):
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>> A = [0 1; 2 3]; 
>> B = [0 1; 1 0];
>> A*B
ans =

1  0
3  2

Operator * (mtimes) is used to compute 
the matrix multiplication (row-by-column).

>> A*2
ans =
     0  2
     4  6

If one of the operands is a scalar, then the 
same operation is repeated for each element 
of the other operand.

>> mtimes(A,B) (Rarely used) Function equivalent to 
operator *.



Operations with matrices
Matrix power:
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>> A = [0 1; 2 3]; 
>> A^2
ans =

2  3
6  11

Operator ^ (mpower) is used to compute 
matrix powers (e.g. A^2 = A*A).

>> A^-1
ans =
   -1.5000    0.5000
    1.0000         0

>> inv(A)
ans =
   -1.5000    0.5000
    1.0000         0

A^-1 denotes (if exists) the inverse of the 
(square) matrix A.

The inverse of a square matrix can be 
alternatively computed with the function 
inv(…).

>> mpower(A,2) (Rarely used) Function equivalent to 
operator ^.



Operations with matrices
Solving systems of linear equations:
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>> A=[1, 2; 3, 4];
>> B=[1; 2];
>> x=A\B
x =
         0
    0.5000

The operator \ (mldivide) is used to 
compute (if exists) the solution of systems 
of linear equations of the type: 𝐴 𝑥 = 𝐵.

If A is a 𝑛×𝑛 nonsingular matrix and B has 
𝑛 rows, then the operator \ computes 
(with a numerically robust algorithm)  the 
solution: 𝑥 = 𝐴!"𝐵.

>> A=[1, 2; 3, 4; 5, 6];
>> B=[1; 2; 4];
>> x=A\B
x =
  0.6667
  0.0833

If A is a 𝑛×𝑚 matrix with 𝑛 ≠ 𝑚 and B 
has 𝑛 rows, then the operator \ computes 
the least-squares solution:

𝑥 = 𝐴#𝐴 !"𝐴#𝐵

>> x=mldivide(A,B) (Rarely used) Function equivalent to 
operator \.



Operations with matrices
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>> A=[1, 2; 3, 4];
>> B=[1, 2];
>> x=B/A
x =
  1  0

The operator / (mrdivide) is used to 
compute (if exists) the solution of systems 
of linear equations of the type: 𝑥 𝐴 = 𝐵.

If A is a 𝑛×𝑛 nonsingular matrix and B has 
𝑛 columns, then the operator / computes 
(with a numerically robust algorithm)  the 
solution: 𝑥 = 𝐵 𝐴!".

>> A=[1 1 3; 2 0 4; -1 6 -1];
>> B=[2 19 8];
>> x=B/A
x =
  1.0000    2.0000    3.0000

If A is a 𝑛×𝑚 matrix with 𝑛 ≠ 𝑚 and B 
has 𝑚 columns, then the operator / 
computes the least-squares solution: 

𝑥 = 𝐵𝐴# 𝐴 𝐴# !"

>> x=mrdivide(B,A) (Rarely used) Function equivalent to 
operator /.



Operations with matrices
Matrix transpose:
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>> A=[1, 2; 3, 4];
>> A’
ans =
     1   3
     2   4

The operator ’ is used to compute the 
transpose of a real matrix.

>> A =[1, 1+1i; 2-1i, 2];
>> A’
 1.0000 + 0.0000i   2.0000 + 1.0000i
 1.0000 - 1.0000i   2.0000 + 0.0000i

>> A.’
 1.0000 + 0.0000i   2.0000 - 1.0000i
 1.0000 + 1.0000i   2.0000 + 0.0000i

With a matrix of complex numbers, the 
operator ’ computes its conjugate-
transpose (Hermitian).

To compute only the transpose (without 
conjugation), use the operator .’

>> transpose(A)
 1.0000 + 0.0000i   2.0000 - 1.0000i
 1.0000 + 1.0000i   2.0000 + 0.0000i

(Less used) Use the transpose(…) 
routine.



Operations with matrices
Element-wise operators: obtained by preceding 
the operator with . (dot).
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>> A=[0,1;2,3]; B=[1,2;3,4];
>> A.*B
ans =
     0   2
     6   12

Element-wise multiplication (times).

>> A.^2
ans =
     0   1
     4   9

Element-wise power (power).

>> A./B
ans =
         0    0.5000
    0.6667    0.7500

Element-wise right divide (rdivide).



Relational operators
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>> a=1; b=2;
>> a==b, a~=b
ans =
 logical
  0
ans =
 logical
  1

Equal to (== ; function equivalent: eq), 
Not equal to (~= ; function equivalent: ne).

Note: a relational operator returns a logical value.

>> a>b, a>=b
ans =
 logical
  0
ans =
 logical
  0

Greater than (> ; function equivalent: gt), 
Greater than or equal to (>= ; function equivalent: ge).

>> a<b, a<=b
ans =
 logical
  1
ans =
 logical
  1

Less than (< ; function equivalent: lt), 
Less than or equal to (<= ; function equivalent: le).



Logical operators
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>> a=0; b=1;
>> a & b
ans=
 logical
  0

Logical AND (function equivalent: and).

Note: any nonzero value is equivalent to 
logical true, and false otherwise.

>> a | b
ans=
 logical
  1

Logical OR (function equivalent: or).

>> ~a
ans=
 logical
  1

Logical NOT (function equivalent: not).



Logical operators
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>> a=0; b=1; c=2;
>> (a > 0) && (b/c < 1)
ans=
 logical
  0

Logical AND with short-circuiting.

With logical short-circuiting, the 2nd operand is 
evaluated only when the result is not fully 
determined by the 1st operand.

In the example, the 2nd operand(b/c < 1) is not 
evaluated, because the result can be determined 
from the 1st operand.

>> (a > 0) || (b/c < 1)
ans=
 logical
  1

Logical OR with short-circuiting.

In the example, the 2nd operand(b/c < 1) is 
evaluated, because the result can not be 
determined from the 1st operand.



all & any functions
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>> a = [0,2]; b = [3,1];
>> a & b
ans=
  1×2 logical array
  0   1

>> a < b
ans=
  1×2 logical array
  1   0

Note: logical and relational operators apply 
element-wise to vector and matrices operands.

>> all(a > 0)
ans=
 logical
  0

>> any(a > 0)
ans=
 logical
  1

Use the any and all functions to reduce each 
logical vector to a single logical condition.

all determines if all the array elements are 
nonzero or true.

any determines if any of the array elements 
are nonzero or true.



Operations with polynomials
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>> A = [1, 1, 0]; B = [1, 1];
>> C = A + [0, B]
C =
   1   2   1

Given the polynomials 𝐴 𝑥 = 𝑥$ + 𝑥 and 
𝐵 𝑥 = 𝑥 +1 , evaluates their sum:

𝐶 𝑥 = 𝐴 𝑥 + 𝐵 𝑥 = 𝑥$ + 2𝑥 + 1

>> C = conv(B, B)
C =
   1   2   1

Polynomial multiplication is performed by 
using the function conv (convolution):

𝐶 𝑥 = 𝐵 𝑥 𝐵 𝑥 = 𝑥$ + 2𝑥 + 1

>> [Q,R] = deconv(C, B)
Q =
   1   1

R =
   0   0   0

Polynomial division is performed by using 
the function deconv (deconvolution):

Note: Q and R are the quotient and the 
reminder, so that:

𝐶 𝑥 = 𝑄 𝑥 𝐵 𝑥 + 𝑅(𝑥)



Functions Library
•MATLAB comes with a huge library of functions 
(either built-in or in optional toolboxes); it is 
impossible to provide an exhaustive list ...

• Explore the library with the Function Browser:
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Click the Browse for functions (fx) 
button to open the Function Browser.



Functions Library
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Search for a function.

Browse by category.

Function Browser

Select an entry to get 
a brief description.



Functions Library
•Most of the functions for scalars also operate 
(element-wise) with vector/matrix arguments.

• Calling scheme for a function:

Introduction to MATLAB 49

[<out1>,<out2>, …] = <fcn_name>(<in1>, <in2>, … )

<fcn_name> Function name.

<out1>,<out2>, … Return parameters (output variables).

<in1>, <in2>, … Input arguments (input variables).



Elementary Math: Arithmetic Functions
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Rounding functions
round(x) Round to nearest integer.
fix(x) Round to the nearest integer toward zero.
ceil(x) Round to the nearest integer greater than or equal to x.
floor(x) Round to the nearest integer less than or equal to x.

Rational approximation functions

rem(a,b) returns the remainder after division of a (dividend) by b 
(divisor); equivalent to: r=a-b.*fix(a./b).

mod(a,m) returns the remainder after division of a (dividend) by m 
(divisor); equivalent to: r=a-m.*floor(a./m).

rats(x) returns a character vector containing the rational 
approximations to the elements of x, using the default 
length of 13.



Elementary Math: Arithmetic Functions
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Example

>>>> round([-0.4, 0.4, 0.6])

ans =

     0     0     1

>> fix([-0.4, 0.4, 0.6])

ans =

     0     0     0

>> floor([-0.4, 0.4, 0.6])

ans =

    -1     0     0

⋮

⋮

>> ceil([-0.4, 0.4, 0.6])

ans =

     0     1     1

>> rem(3,2)

ans =

     1

>> rats(1.5)

ans =

    '      3/2     '



Elementary Math: Arithmetic Functions
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Sum & product or array elements

sum(X) Sum of the elements of X (1).

diff(X) Differences between adjacent elements of X (1).

prod(X) Product of the elements of X (1).

cumsum(X) Cumulative sum of the elements of X (1).

movsum(X,k) Returns an array of local k-point sums, where each sum is 
calculated over a sliding window of length k across 
neighboring elements of X (1).

cumprod(X) Cumulative product of the elements of X (1).

(1) Operation performed along the 1st array dimension whose size is greater than 1.



Elementary Math: Arithmetic Functions
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Example
>> a = [1 2 4];
>> sum(a)

ans =

     7

>> diff(a)

ans =

     1     2

>> prod(a)

ans =

     8

⋮

⋮
>> cumsum(a)

ans =

     1     3     7

>> A = [1 5 3; 4 2 6];
>> sum(A,1)

ans =

     5     7     9

>> sum(A,2)

ans =

     9
    12



Elementary Math: Complex Numbers 
Functions

Introduction to MATLAB 54

Complex arithmetic functions

i, j, 1i, 1j Imaginary unit. Use 1i and 1j for improved numerical 
robustness (and to avoid possible name-shadowing with 
user-defined variables).

complex(a,b) Defines the complex number z = a + 1i*b.

real(z) Returns the real part of complex number z.

imag(z) Returns the imaginary part of complex number z.

abs(z) Returns the magnitude of complex number z.

angle(z) Returns the phase angle of complex number z.

conj(z) Returns the conjugate of complex number z.
Alternatively, use z’ (operator form).



Elementary Math: Complex Numbers 
Functions
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Example

>> a = (1/2)+(sqrt(3)/2)*1i

a =

   0.5000 + 0.8660i

>> real(a)

ans =

    0.5000

>> imag(a)

ans =

    0.8660

⋮

⋮
>> abs(a)

ans =

    1.0000

>> angle(a)

ans =

    1.0472

>> rad2deg( angle(a) )

ans =

   60.0000



Elementary Math: Transcendental functions
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Trigonometric functions

pi Floating-point number nearest the value of 𝜋.

sin(x), cos(x), tan(x) Sine, cosine and tangent of x in [rad].
Use sind, cosd, tand if x is in [deg] units.

sec(x), csc(x), cot(x) Secant, cosecant and cotangent of x in [rad].
Use secd, cscd, cotd if x is in [deg] units.

asin(x), acos(x), atan(x) Inverse sine, cosine and tangent of x; return value 
is in [rad]. Use asind, acosd, atand to get a 
return value in [deg] units.

atan2(y,x) Four-quadrant inverse tangent of y and x; return 
value is in [rad].

sinh(x), cosh(x), 
tanh(x), sech(x), …

Hyperbolic functions.

deg2rad(x), rad2deg(x) deg-to-rad and rad-to-deg unit conversions.



Elementary Math: Transcendental functions
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Exponential functions

exp(x) Exponential of x: 𝑒%

pow2(x) Base-2 power of x: 2%

log(x), log2(x), log10(x) Natural logarithm, base-2 logarithm and base-10 
logarithm of x.

expm(X) Matrix exponential:

exp 𝑋 = A
&'(

)*
1
𝑘! 𝑋

&

sqrt(x), nthroot(x) Square root and nth real root of x.



Elementary Math: Polynomial Functions
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Functions for polynomials

polyval(p,x) Evaluates the polynomial p at each point in x.

roots(p) Computes the roots of polynomial p.

poly(r) Returns the polynomial whose roots are the elements 
of the vector r.

residue(b,a) Partial fraction decomposition of the ratio of the 
polynomials a and b.

conv(a,b), 
deconv(a,b)

Multiplication (convolution) and division 
(deconvolution) of polynomials a and b.

polyint(p), 
polyder(p)

Integral and derivative of polynomial p.



Elementary Math: Polynomial Functions
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Example
>> p = [1 2 1]; 
>> polyval(p, 0)

ans =
     1

>> roots(p)

ans =

    -1
    -1

>> poly([-1 -1])

ans =

     1     2     1

⋮

⋮

>> [R,P,K] = residue([2 1], [1 3 2])
R =
     3
    -1

P =
    -2
    -1

K =
     []

𝐵(𝑥)
𝐴(𝑥)

=
2𝑥 + 1

𝑥$ + 3𝑥 + 2
= ⋯

⋯ =
𝑅 1

𝑥 − 𝑃 1 +
𝑅 2

𝑥 − 𝑃 2 + 𝐾 =
3

𝑥 + 2 +
−1
𝑥 + 1



Linear Algebra Functions
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Linear Algebra Functions
det(X) Determinant of square matrix X.

rank(X) Rank of matrix X.

trace(X) Sum of diagonal elements (trace) of square matrix X.

inv(X) Inverse of non-singular square matrix X.

eig(X) Eigenvalues and eigenvectors of square matrix X.

poly(X) Characteristic polynomial of square matrix X.

svd(X) Singular values decomposition of matrix X.



Basic statistics
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Descriptive statistics – basic functions

min(X), max(X) Minimum/maximum elements of array X.

mink(X,k), 
maxk(X,k)

k smallest/largest elements of array X.

mean(X) Average (mean value) of elements of array X.

var(X), std(X) Variance/Standard-deviation of elements of array X.

Note: if X has N elements, then the variance is normalized 
to 𝑁 − 1 by default (unbiased sample variance).

median(X) Median value of elements of array X (i.e. middle value 
separating the higher and lower halves of sorted X) . 

mode(X) Most frequent value (mode) in array X.

sort(X) Sort elements of array X.



Basic statistics
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Example

>> a = [1 9 7 2 5];
>> min(a)

ans =
     1

>> max(a)

ans =
     9

>> maxk(a,2)

ans =
     9     7

⋮

⋮
>> mean(a)

ans =
    4.8000

>> var(a)

ans =
   11.2000

>> sort(a)

ans =
     1     2     5     7     9

>> median(a)

ans =
     5



Strings Functions 
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Functions for Characters & Strings

strcat(s1, …, sN) Concatenates string s1,…,sN horizontally; use row 
vectors concatenation [s1,…,sN] to preserve spaces.

strrep(s, old, new) Replaces all occurrence of the string old in the string s 
with the new string new.

lower(s), upper(s) Converts string s to lower-case or upper-case.

strncmp(s1,s2,n) Compares the first n characters of strings s1 and s2. 

Note: Comparison is case-sensitive; for case-insensitive 
comparison, use strncmpi.

num2str(A) Converts the numeric array A into its character 
representation.

str2num(s) Converts the string s to a numeric value.



Strings Functions 
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Example

>> s1 = ‘Hello’;
>> s2 = ‘World’;
>> s3 = strcat(s1,' ',s2,' !')

s3 =

    'HelloWorld !'

>> s4 = [s1, ' ', s2, ' !']

s4 =

    'Hello World !’

>> strrep(s4, s2, 'Folks')

ans =

    'Hello Folks !’

⋮

⋮

>> a = [1, 2, 3; 4, 5, 6]
>> num2str(a)

ans =

  2×7 char array

    '1  2  3'
    '4  5  6’

>> str2num('123.456’)

ans =

  123.4560


