
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License

Introduction to MATLAB

Riccardo Antonello
(riccardo.antonello@unipd.it)

Giulia Michieletto
(giulia.michieletto@unipd.it)

Dipartimento di Tecnica e Gestione dei Sistemi Industriali

Università degli Studi di Padova

4 Marzo 2024

mailto:riccardo.antonello@unipd.it
mailto:giulia.michieletto@unipd.it

What is MATLAB ?
MATLAB (MATrix LABoratory) is a:
− Numerical computing environment.
− Programming language.

MATLAB easily allows:
− Matrix manipulations.

− Data analysis and visualization.
− Implementation of algorithms.

− Interfacing with other programming languages
(Java, C/C++/C#, Fortran, Python).

Introduction to MATLAB 1

What is MATLAB ?
MATLAB is primarily intended for numerical
computing, not symbolic computing (such as the
Mathematica or Maple environments) (1).

The additional Simulink package (tightly integrated
with MATLAB) allows to model and simulate
dynamical systems by using a block-diagram-based
graphical interface.

(1) Limited support for symbolic computation is provided with the optional
Symbolic Math Toolbox (based on the MuPAD symbolic engine)

Introduction to MATLAB 2

What is MATLAB ?
The MATLAB programming language:
– supports multiple programming paradigms, e.g. imperative,

procedural, object-oriented, functional.

– operates primarily on matrices.

– is mainly an interpreted (scripting) language (1).

The simplest type of MATLAB program is a text file
(MATLAB script) containing a sequence of
MATLAB commands and functions.

(1) Compilation of MATLAB scripts is also possible by using the MATLAB Compiler.

Introduction to MATLAB 3

Why to use MATLAB ?
�

<latexit sha1_base64="eNVJKq9Uau/jHL5fylM7vVPgcG4=">AAACC3icbVDLSsNAFJ3UV62vqks3wSK4KkkR1F3RjTsrNG2hCWUyvWmHzmTCzEQpoZ/g1q3+gztx60f4C36F0zYL23rgwuGce7mHEyaMKu0431ZhbX1jc6u4XdrZ3ds/KB8etZRIJQGPCCZkJ8QKGI3B01Qz6CQSMA8ZtMPR7dRvP4JUVMRNPU4g4HgQ04gSrI3k+xFuDlMeqnsv6ZUrTtWZwV4lbk4qKEejV/7x+4KkHGJNGFaq6zqJDjIsNSUMJiU/VZBgMsID6BoaYw4qyGaZJ/aZUfp2JKSZWNsz9e9FhrlSYx6aTY71UC17U/E/r5vq6CrIaJykGmIyfxSlzNbCnhZg96kEotnYEEwkNVltMsQSE21qWvgyDYafQAkOE1OOu1zFKmnVqu5F9fqhVqnf5DUV0Qk6RefIRZeoju5QA3mIoAS9oFf0Zj1b79aH9TlfLVj5zTFagPX1C58onEs=</latexit>

Over 3 millions users worldwide (industry & academia).

�

<latexit sha1_base64="eNVJKq9Uau/jHL5fylM7vVPgcG4=">AAACC3icbVDLSsNAFJ3UV62vqks3wSK4KkkR1F3RjTsrNG2hCWUyvWmHzmTCzEQpoZ/g1q3+gztx60f4C36F0zYL23rgwuGce7mHEyaMKu0431ZhbX1jc6u4XdrZ3ds/KB8etZRIJQGPCCZkJ8QKGI3B01Qz6CQSMA8ZtMPR7dRvP4JUVMRNPU4g4HgQ04gSrI3k+xFuDlMeqnsv6ZUrTtWZwV4lbk4qKEejV/7x+4KkHGJNGFaq6zqJDjIsNSUMJiU/VZBgMsID6BoaYw4qyGaZJ/aZUfp2JKSZWNsz9e9FhrlSYx6aTY71UC17U/E/r5vq6CrIaJykGmIyfxSlzNbCnhZg96kEotnYEEwkNVltMsQSE21qWvgyDYafQAkOE1OOu1zFKmnVqu5F9fqhVqnf5DUV0Qk6RefIRZeoju5QA3mIoAS9oFf0Zj1b79aH9TlfLVj5zTFagPX1C58onEs=</latexit>

Large collection of readily available functions to
perform several computational tasks:

− Built-in functions.
− Functions included in optional toolboxes.
− Functions provided by large user community

(see https://www.mathworks.com/matlabcentral/).

�

<latexit sha1_base64="eNVJKq9Uau/jHL5fylM7vVPgcG4=">AAACC3icbVDLSsNAFJ3UV62vqks3wSK4KkkR1F3RjTsrNG2hCWUyvWmHzmTCzEQpoZ/g1q3+gztx60f4C36F0zYL23rgwuGce7mHEyaMKu0431ZhbX1jc6u4XdrZ3ds/KB8etZRIJQGPCCZkJ8QKGI3B01Qz6CQSMA8ZtMPR7dRvP4JUVMRNPU4g4HgQ04gSrI3k+xFuDlMeqnsv6ZUrTtWZwV4lbk4qKEejV/7x+4KkHGJNGFaq6zqJDjIsNSUMJiU/VZBgMsID6BoaYw4qyGaZJ/aZUfp2JKSZWNsz9e9FhrlSYx6aTY71UC17U/E/r5vq6CrIaJykGmIyfxSlzNbCnhZg96kEotnYEEwkNVltMsQSE21qWvgyDYafQAkOE1OOu1zFKmnVqu5F9fqhVqnf5DUV0Qk6RefIRZeoju5QA3mIoAS9oFf0Zj1b79aH9TlfLVj5zTFagPX1C58onEs=</latexit>

Easy to learn the basics; it allows to quickly explore
several alternatives to get a solution.

Introduction to MATLAB 4

https://www.mathworks.com/matlabcentral/

Preliminaries
A MATLAB Total Academic Headcount (TAH) License is
available for all the students and employees of University
of Padova.

The license allows to install a full copy of MATLAB and
companion toolboxes on personally-owned computers.

Instructions for downloading and installing the software
can be found here:
https://www.csia.unipd.it/servizi/servizi-utenti-
istituzionali/contratti-software-e-licenze/matlab

Introduction to MATLAB 5

https://www.csia.unipd.it/servizi/servizi-utenti-istituzionali/contratti-software-e-licenze/matlab
https://www.csia.unipd.it/servizi/servizi-utenti-istituzionali/contratti-software-e-licenze/matlab

Desktop Basics

Introduction to MATLAB 6

Current Folder panel:
Access to files

Command Window:
• Interactive mode: enter commands at MATLAB prompt (>>).
• Non-interactive mode: launch MATLAB scripts.

Workspace panel:
Explore data defined
in memory (workspace).

Command History panel:
Review previously entered
commands.

Change the desktop layout
by using this button.

Command Window Basics

Introduction to MATLAB 7

>> MATLAB prompt.
>> <command> ↩ Executes a command and prints the output

on the command window.

>> <command>; ↩ Executes a command, without printing the
output on the command window.

>> <command>; <command>; ↩ Enters multiple commands on a single
prompt; no output shown on the command
window.

>> <command>, <command> ↩ Enters multiple commands on a single
prompt; the output of each command is
shown on the command window.

>> <long command line> … ↩
<continuation of command line> ↩

Continue a statement to the next line using
ellipsis (…).

>> ⬆ ⬇ Use up and down arrow keys to recall
previously entered commands.

Online Help
From Command Window:

From toolbar:

Introduction to MATLAB 8

>> help <name> ↩ Displays the help text for <name> in the
Command Window.

>> doc <name> ↩ Displays the documentation for <name> in
the Help Browser.

>> doc ↩ Opens the Help Browser.
>> lookfor <keyword> ↩ Searches for the specified keyword in the

online help.
>> demo ↩ Displays a list of features MATLAB and

Simulink examples in the Help browser.

Help Browser

Introduction to MATLAB 9

Workspace
The workspace is the area of memory containing the
variables created and used in a MATLAB session.

To define a variable in the workspace:

ans (short for answer) is a special variable
containing the result of the last computation.

Introduction to MATLAB 10

>> a = 1 ↩ Note: the assignment operator is denoted with =

>> 1+1 ↩
 ans =
 2

If the result of an operation is not assigned to a variable,
then it is assigned to the special variable ans.

Workspace
Variables in the workspace are dynamically
allocated; no data type declaration is required.

Variables names:
− start with a letter, followed by letters, digits, or underscores.
− must be different from MATLAB keywords.
− should be different from names of already existing

commands or functions (avoid name shadowing).

MATLAB is case sensitive (e.g. a and A are
different variables).

Introduction to MATLAB 11

Workspace Management

Introduction to MATLAB 12

>> who Lists the variables in the current workspace.

>> whos Lists the variables in the current workspace,
including size, type, …

>> clear <variable> Removes a variable from workspace.

>> clear all Removes all the variables from workspace.

>> save <filename> <variables list> Stores variables into a MATLAB formatted
binary data file (MAT-file, extension .dat).

>> save <filename> Stores all the workspace variables into a MAT-
file

>> load <filename> Loads variables from a MAT-file into the
workspace.

>> load <filename> <variables list> Loads selected variables from a MAT-file into
the workspace.

Introduction to MATLAB 13

Workspace Management
Example

>> a=1; b=2; c=3;
>> A=4; B=5; C=6;

>> save UppercaseVars A B C
>> save LowercaseVars a b c

>> clear all
>> who

>> load UppercaseVars
>> who

Your variables are:

A B C

>> load LowercaseVars
>> whos

⋮

⋮

Your variables are:

A B C a b c

>> clear a b c
>> whos

Your variables are:

A B C

>> load LowercaseVars a
>> who

Your variables are:

A B C a

Workspace Management

Introduction to MATLAB 14

The workspace can be also managed from the Workspace panel
(right-click on it to access a pop-up menu with several options).

Working Directory Management

Introduction to MATLAB 15

>> pwd Print working directory (MATLAB current folder).

>> dir <path>, ls <path> List content of directory specified by <path>.

>> what <path> List MATLAB files (e.g. .m, .mat, …) in directory
specified by <path>.

>> which <item> Locate functions and files specified by <item>.

>> cd <path> Change current directory to <path>.

>> copyfile <source> <dest> Copy file or directory <source> to <dest>.

>> delete <path> Delete the file specified by <path>.

>> mkdir <path>
>> rmdir <path>

Make/Remove the directory specified by <path>.

>> !<cmd> (or system(<cmd>)) Execute operating system command <cmd>
(Shell escape function).

Working Directory Management

Introduction to MATLAB 16

Example

>> pwd

ans =
 '/Users/riccardo/Documents/MATLAB’

>> ls
Examples SupportPackages
UppercaseVars.mat
LowercaseVars.mat Toolboxes

>> what

MAT-files in the current folder
/Users/riccardo/Documents/MATLAB

LowercaseVars UppercaseVars

⋮

⋮

>> delete LowercaseVars.mat
>> what

MAT-files in the current folder
/Users/riccardo/Documents/MATLAB

UppercaseVars

Working Directory Management

Introduction to MATLAB 17

The working directory can be also managed from the Current Folder panel
(right-click on it to access a pop-up menu with several options).

Representation of real numbers
Real numbers are internally represented with the
finite set of double-precision floating-point numbers
(IEEE 754 format).

Introduction to MATLAB 18

realmax, realmin Largest and smallest IEEE double-precision positive
floating-point number.

Inf IEEE arithmetic representation for positive infinity.
Every value above realmax is represented with ±Inf;
every value below realmin is represented with 0.

NaN IEEE arithmetic representation of Not-a-Number.
This value is used for operations which have an undefined
result (e.g. 0/0, ∞/∞, …).

eps Floating-point relative accuracy. It is the distance from 1.0
to the next larger double-precision number. Its value is 2-52.

Representation of real numbers
When representing real numbers, distinction is made
between internal and external format:

⤷ Internal format: used to perform computations.
It is always the double-precision format.

⤷ External format: used to display the numeric
values on the Command Window.
It can be controlled with the format command.

Introduction to MATLAB 19

Representation of real numbers

Introduction to MATLAB 20

External format selection

format long Long, fixed-decimal format with 15 digits after the decimal pt. 3.141592653589793

format short Short, fixed-decimal format with 4 digits after the decimal pt. 3.1416

format longE Long scientific notation with 15 digits after the decimal pt. 3.141592653589793e+00

format shortE Short scientific notation with 4 digits after the decimal pt. 3.1416e+00

format longG More compact format between long and longE. 3.14159265358979

format shortG More compact format between short and shortE. 3.1416

format longEng Long engineering notation with 15 digits after the decimal pt.
Exponent is a multiple of 3.

3.14159265358979e+000

format shortEng Short engineering notation with 4 digits after the decimal pt.
Exponent is a multiple of 3.

3.1416e+000

format rat Ratio of small integers. 355/113

format compact Suppress blank lines to show more output on a single screen.

format loose Add blank lines to make output more readable.

Representation of real numbers

Introduction to MATLAB 21

Example

>> format short
>> a = 1/7

a = 0.1429

>> format compact
>> a

a = 0.1429

>> format long
>> a

a = 0.142857142857143

>> format shortE
>> a

a = 1.4286e-01
⋮

⋮

>> format shortEng
>> a

a = 142.8571e-003

>> format loose
>> a

a = 142.8571e-003

>> format rat
>> a

a = 1/7

Representation of complex numbers
Complex numbers are represented by a pair of
double-precision floating-point numbers (real and
imaginary parts).

Introduction to MATLAB 22

1i, 1j Imaginary unit. Variables i and j can
also be used, but:
• numerical robustness in complex

arithmetic is reduced.
• can be easily overridden by user-

defined variables.
<complex num> = <real part> + 1i*<imag part> Algebraic (cartesian) notation.

<complex num> = <mag> * exp(1i*<arg>) Polar notation.

<complex num> = complex(<real part>,<imag part>) Using complex function.

Representation of complex numbers

Introduction to MATLAB 23

Example

>> format short
>> a = 1+1i

a =

 1.0000 + 1.0000i

>> b = complex(-2,3)

b =

 -2.0000 + 3.0000i

>> c = 2*exp(1i*pi/2)

c =

 0.0000 + 2.0000i

⋮

⋮
>> d = 1+i

d =

 1.0000 + 1.0000i

>> i = 1;
>> e = 1+i

e =

 2

i and j also denote, by default, the imaginary unit;
however, differently from the special quantities 1i
and 1j, they can be assigned to different values, so
that they no longer refer to the imaginary unit.

Representation of vectors & matrices
Definition of vectors and matrices:
• Square brackets ([]): enclose the elements.
• Comma (,) or space : separate elements on the same row.
• Semicolon (;) : separates the rows.

Note: vectors are treated as single-column/single-row matrices.

Introduction to MATLAB 24

Row vector (1×m) >> A=[1 2 3] or >> A=[1, 2, 3]

Column vector (n×1) >> A=[1; 2; 3] or
>> A=[1 ↩
2 ↩
3]

Matrix (n×m) >> A=[1 2 3; 4 5 6] or >> A=[1, 2, 3; 4, 5, 6]
or
>> A=[1 2 3; ↩
4 5 6]

Representation of vectors & matrices
Definition of matrices with particular structure:

Introduction to MATLAB 25

[] Empty matrix.
eye(n) 𝑛×𝑛 identity matrix.
zeros(n,m) 𝑛×𝑚 matrix with elements equal to 0.
ones(n,m) 𝑛×𝑚 matrix with elements equal to 1.
diag(<vector>) Diagonal matrix with elements of <vector> on

the leading diagonal.

<min_val>:<max_val> Row vector with increasing elements from
<min_val> to <max_val>, with incremental
step equal to 1.

<min_val>:<step>:<max_val> Row vector with increasing elements from
<min_val> to <max_val>, with incremental
step equal to <step>.

Representation of vectors & matrices

Introduction to MATLAB 26

linspace(<min_val>,
<max_val>,
<num_of_elements>)

Vector of <num_of_elements> elements evenly
spaced from <min_val> to <max_val>.

logspace(<min_val>,
<max_val>,
<num_of_elements>)

Vector of <num_of_elements> elements
logarithmically spaced (base 10) from
<min_val> to <max_val>.

rand(n,m) 𝑛×𝑚 matrix with uniformly-distributed random
real numbers in the interval (0,1).

randn(n,m) 𝑛×𝑚 matrix with normally-distributed random real
numbers (mean = 	0, variance = 	1).

randi(N,n) 𝑛×𝑛 matrix with uniformly-distributed random
integer numbers in the interval [1, 𝑁].

toeplitz, magic, hilb,
invhilb, vander, pascal,
hadamard, hankel,
rosser, wilkinson, …

Matrices with special structure (consult online
documentation).

Representation of vectors & matrices

Introduction to MATLAB 27

Example
>> A = ones(1,3)

A =
 1 1 1

>> B = zeros(2,1)

B =
 0
 0

>> C = diag([2 3])

C =
 2 0
 0 3

⋮

⋮
>> a = 1:5

a =
 1 2 3 4 5

>> b = 1:2:10

b =
 1 3 5 7 9

>> C = linspace(-1,1,4)

C =
 -1.0000 -0.3333 0.3333 1.0000

>> D = randi(10, 1, 5)

D =
 9 7 4 10 1

Array Indexing

Introduction to MATLAB 28

A(i,j) Element at 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of matrix A.
Note: row/column indexes start from 1 (not 0 !).

A(i,:) 𝑖𝑡ℎ row of matrix A.
A(:,j) 𝑗𝑡ℎ column of matrix A.
A(<vector of row indexes>,
<vector of column indexes>)

Submatrix of A composed by elements located at
rows indexed by <vector of row indexes>, and
columns indexed by <vector of column indexes>.

Note: the vectors of row/column indexes can be
generated with the notation:

<min_val>:<step>:<max_val>

end can be used to index the last row/column.
length(X) Length of vector X.

[N,M]=size(X) Size (rows N and columns M) of matrix X.

Array Indexing

Introduction to MATLAB 29

Example
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3
 4 5 6
 7 8 9

>> A(2,:)

ans =
 4 5 6

>> A([1 3], [2 3])

ans =

 2 3
 8 9

⋮

⋮
>> A(1:2,:)

ans =

 1 2 3
 4 5 6

>> size(A)

ans =

 3 3

>> length(A(1,:))

ans =

 3

Dynamic Resizing
Size of vectors and matrices is dynamically (i.e.
on-the-fly) adjusted when needed.

Introduction to MATLAB 30

If A has not been previously defined …
>> A(2,3)=1 … creates a 2×3 matrix with element (2,3) equal

to 1, and the remaining to 0.

If A is a 2×2 matrix …
>> A(2,3)=1 … adds an extra column to A, with bottom

element equal to 1, and the remaining to 0.

If A is a 2×2 matrix and B a 2×3 matrix…
>> A=[A,B] … resizes A to 2×5 matrix, whose columns are

those of the original A, followed by those of B.

If A is a 2×2 matrix and B a 3×2 matrix…
>> A=[A;B] … resizes A to 5×2 matrix, whose rows are those

of the original A, followed by those of B.

Representation of strings
Strings are row vectors of characters.

Introduction to MATLAB 31

’a’ A character is defined by enclosing it within
single quotes.

’abcd’ A string is defined by enclosing its characters
within single quotes.

[’a’,’b’,’c’,’d’] A string can be alternatively defined as a row
vector of characters.

>> s=’abc’;
>> s(2)=’a’; s(3)=’’;
>> s
s =
 ’aa’

String characters can be indexed as elements of
conventional arrays.

>> s1=’abc’; s2=’def’;
>> s=[s1,s2]
s =
 ’abcdef’

Strings concatenation is performed as a
concatenation of conventional row vectors.

Representation of polynomials
Polynomials are represented as row vectors
containing coefficients ordered by descending
powers of the independent variable.

Introduction to MATLAB 32

>> p = [2, 0, -1, 3]; Representation of the polynomial:

𝑝 𝑥 = 2𝑥0 + 0𝑥1 − 𝑥 + 3

Representation of boolean values
Boolean variables are called logical variables in
MATLAB.

Introduction to MATLAB 33

>> a=true
a =
 logical
 1

>> b=false
b =
 logical
 0

A logical variable can assume only the value true
or false (predefined keywords for logical(1)
and logical(0)).

>> logical([0,1,2])
ans =
 1×3 logical array
 0 1 1

Any nonzero numerical value is casted to logical true
when using logical(…).

Struct arrays
A structure array (struct) is a data type that
groups related data using data containers
called fields.

Each field can contain any type of data; use the
“dot-notation” to access the data in a field:

Introduction to MATLAB 34

>> student.firstName = ’Charlie’;
>> student.lastName = ’Brown’;
>> student.age = 8;

student is a struct with 2 string
fields (firstName, lastName)
and a numeric field (age).

Operations with matrices
Matrix addition and subtraction:

Introduction to MATLAB 35

>> A = [0 1; 2 3];
>> B = ones(2,2);
>> A+B
ans =

1 2
3 4

Operators + (plus) and – (minus) are
used to add and subtract matrices of the
same size.

>> A+1
ans =

1 2
3 4

If one of the operands is a scalar, then
the same operation is repeated for each
element of the other operand.

>> minus(1,B)
ans =

0 0
0 0

(Rarely used) plus and minus are the
function equivalents to operators + & -.

Operations with matrices
Matrix multiplication (row-by-column):

Introduction to MATLAB 36

>> A = [0 1; 2 3];
>> B = [0 1; 1 0];
>> A*B
ans =

1 0
3 2

Operator * (mtimes) is used to compute
the matrix multiplication (row-by-column).

>> A*2
ans =
 0 2
 4 6

If one of the operands is a scalar, then the
same operation is repeated for each element
of the other operand.

>> mtimes(A,B) (Rarely used) Function equivalent to
operator *.

Operations with matrices
Matrix power:

Introduction to MATLAB 37

>> A = [0 1; 2 3];
>> A^2
ans =

2 3
6 11

Operator ^ (mpower) is used to compute
matrix powers (e.g. A^2 = A*A).

>> A^-1
ans =
 -1.5000 0.5000
 1.0000 0

>> inv(A)
ans =
 -1.5000 0.5000
 1.0000 0

A^-1 denotes (if exists) the inverse of the
(square) matrix A.

The inverse of a square matrix can be
alternatively computed with the function
inv(…).

>> mpower(A,2) (Rarely used) Function equivalent to
operator ^.

Operations with matrices
Solving systems of linear equations:

Introduction to MATLAB 38

>> A=[1, 2; 3, 4];
>> B=[1; 2];
>> x=A\B
x =
 0
 0.5000

The operator \ (mldivide) is used to
compute (if exists) the solution of systems
of linear equations of the type: 𝐴 𝑥 = 𝐵.

If A is a 𝑛×𝑛 nonsingular matrix and B has
𝑛 rows, then the operator \ computes
(with a numerically robust algorithm) the
solution: 𝑥 = 𝐴!"𝐵.

>> A=[1, 2; 3, 4; 5, 6];
>> B=[1; 2; 4];
>> x=A\B
x =
 0.6667
 0.0833

If A is a 𝑛×𝑚 matrix with 𝑛 ≠ 𝑚 and B
has 𝑛 rows, then the operator \ computes
the least-squares solution:

𝑥 = 𝐴#𝐴 !"𝐴#𝐵

>> x=mldivide(A,B) (Rarely used) Function equivalent to
operator \.

Operations with matrices

Introduction to MATLAB 39

>> A=[1, 2; 3, 4];
>> B=[1, 2];
>> x=B/A
x =
 1 0

The operator / (mrdivide) is used to
compute (if exists) the solution of systems
of linear equations of the type: 𝑥 𝐴 = 𝐵.

If A is a 𝑛×𝑛 nonsingular matrix and B has
𝑛 columns, then the operator / computes
(with a numerically robust algorithm) the
solution: 𝑥 = 𝐵 𝐴!".

>> A=[1 1 3; 2 0 4; -1 6 -1];
>> B=[2 19 8];
>> x=B/A
x =
 1.0000 2.0000 3.0000

If A is a 𝑛×𝑚 matrix with 𝑛 ≠ 𝑚 and B
has 𝑚 columns, then the operator /
computes the least-squares solution:

𝑥 = 𝐵𝐴# 𝐴 𝐴# !"

>> x=mrdivide(B,A) (Rarely used) Function equivalent to
operator /.

Operations with matrices
Matrix transpose:

Introduction to MATLAB 40

>> A=[1, 2; 3, 4];
>> A’
ans =
 1 3
 2 4

The operator ’ is used to compute the
transpose of a real matrix.

>> A =[1, 1+1i; 2-1i, 2];
>> A’
 1.0000 + 0.0000i 2.0000 + 1.0000i
 1.0000 - 1.0000i 2.0000 + 0.0000i

>> A.’
 1.0000 + 0.0000i 2.0000 - 1.0000i
 1.0000 + 1.0000i 2.0000 + 0.0000i

With a matrix of complex numbers, the
operator ’ computes its conjugate-
transpose (Hermitian).

To compute only the transpose (without
conjugation), use the operator .’

>> transpose(A)
 1.0000 + 0.0000i 2.0000 - 1.0000i
 1.0000 + 1.0000i 2.0000 + 0.0000i

(Less used) Use the transpose(…)
routine.

Operations with matrices
Element-wise operators: obtained by preceding
the operator with . (dot).

Introduction to MATLAB 41

>> A=[0,1;2,3]; B=[1,2;3,4];
>> A.*B
ans =
 0 2
 6 12

Element-wise multiplication (times).

>> A.^2
ans =
 0 1
 4 9

Element-wise power (power).

>> A./B
ans =
 0 0.5000
 0.6667 0.7500

Element-wise right divide (rdivide).

Relational operators

Introduction to MATLAB 42

>> a=1; b=2;
>> a==b, a~=b
ans =
 logical
 0
ans =
 logical
 1

Equal to (== ; function equivalent: eq),
Not equal to (~= ; function equivalent: ne).

Note: a relational operator returns a logical value.

>> a>b, a>=b
ans =
 logical
 0
ans =
 logical
 0

Greater than (> ; function equivalent: gt),
Greater than or equal to (>= ; function equivalent: ge).

>> a<b, a<=b
ans =
 logical
 1
ans =
 logical
 1

Less than (< ; function equivalent: lt),
Less than or equal to (<= ; function equivalent: le).

Logical operators

Introduction to MATLAB 43

>> a=0; b=1;
>> a & b
ans=
 logical
 0

Logical AND (function equivalent: and).

Note: any nonzero value is equivalent to
logical true, and false otherwise.

>> a | b
ans=
 logical
 1

Logical OR (function equivalent: or).

>> ~a
ans=
 logical
 1

Logical NOT (function equivalent: not).

Logical operators

Introduction to MATLAB 44

>> a=0; b=1; c=2;
>> (a > 0) && (b/c < 1)
ans=
 logical
 0

Logical AND with short-circuiting.

With logical short-circuiting, the 2nd operand is
evaluated only when the result is not fully
determined by the 1st operand.

In the example, the 2nd operand(b/c < 1) is not
evaluated, because the result can be determined
from the 1st operand.

>> (a > 0) || (b/c < 1)
ans=
 logical
 1

Logical OR with short-circuiting.

In the example, the 2nd operand(b/c < 1) is
evaluated, because the result can not be
determined from the 1st operand.

all & any functions

Introduction to MATLAB 45

>> a = [0,2]; b = [3,1];
>> a & b
ans=
 1×2 logical array
 0 1

>> a < b
ans=
 1×2 logical array
 1 0

Note: logical and relational operators apply
element-wise to vector and matrices operands.

>> all(a > 0)
ans=
 logical
 0

>> any(a > 0)
ans=
 logical
 1

Use the any and all functions to reduce each
logical vector to a single logical condition.

all determines if all the array elements are
nonzero or true.

any determines if any of the array elements
are nonzero or true.

Operations with polynomials

Introduction to MATLAB 46

>> A = [1, 1, 0]; B = [1, 1];
>> C = A + [0, B]
C =
 1 2 1

Given the polynomials 𝐴 𝑥 = 𝑥$ + 𝑥 and
𝐵 𝑥 = 𝑥 +1 , evaluates their sum:

𝐶 𝑥 = 𝐴 𝑥 + 𝐵 𝑥 = 𝑥$ + 2𝑥 + 1

>> C = conv(B, B)
C =
 1 2 1

Polynomial multiplication is performed by
using the function conv (convolution):

𝐶 𝑥 = 𝐵 𝑥 𝐵 𝑥 = 𝑥$ + 2𝑥 + 1

>> [Q,R] = deconv(C, B)
Q =
 1 1

R =
 0 0 0

Polynomial division is performed by using
the function deconv (deconvolution):

Note: Q and R are the quotient and the
reminder, so that:

𝐶 𝑥 = 𝑄 𝑥 𝐵 𝑥 + 𝑅(𝑥)

Functions Library
•MATLAB comes with a huge library of functions
(either built-in or in optional toolboxes); it is
impossible to provide an exhaustive list ...

• Explore the library with the Function Browser:

Introduction to MATLAB 47

Click the Browse for functions (fx)
button to open the Function Browser.

Functions Library

Introduction to MATLAB 48

Search for a function.

Browse by category.

Function Browser

Select an entry to get
a brief description.

Functions Library
•Most of the functions for scalars also operate
(element-wise) with vector/matrix arguments.

• Calling scheme for a function:

Introduction to MATLAB 49

[<out1>,<out2>, …] = <fcn_name>(<in1>, <in2>, …)

<fcn_name> Function name.

<out1>,<out2>, … Return parameters (output variables).

<in1>, <in2>, … Input arguments (input variables).

Elementary Math: Arithmetic Functions

Introduction to MATLAB 50

Rounding functions
round(x) Round to nearest integer.
fix(x) Round to the nearest integer toward zero.
ceil(x) Round to the nearest integer greater than or equal to x.
floor(x) Round to the nearest integer less than or equal to x.

Rational approximation functions

rem(a,b) returns the remainder after division of a (dividend) by b
(divisor); equivalent to: r=a-b.*fix(a./b).

mod(a,m) returns the remainder after division of a (dividend) by m
(divisor); equivalent to: r=a-m.*floor(a./m).

rats(x) returns a character vector containing the rational
approximations to the elements of x, using the default
length of 13.

Elementary Math: Arithmetic Functions

Introduction to MATLAB 51

Example

>>>> round([-0.4, 0.4, 0.6])

ans =

 0 0 1

>> fix([-0.4, 0.4, 0.6])

ans =

 0 0 0

>> floor([-0.4, 0.4, 0.6])

ans =

 -1 0 0

⋮

⋮

>> ceil([-0.4, 0.4, 0.6])

ans =

 0 1 1

>> rem(3,2)

ans =

 1

>> rats(1.5)

ans =

 ' 3/2 '

Elementary Math: Arithmetic Functions

Introduction to MATLAB 52

Sum & product or array elements

sum(X) Sum of the elements of X (1).

diff(X) Differences between adjacent elements of X (1).

prod(X) Product of the elements of X (1).

cumsum(X) Cumulative sum of the elements of X (1).

movsum(X,k) Returns an array of local k-point sums, where each sum is
calculated over a sliding window of length k across
neighboring elements of X (1).

cumprod(X) Cumulative product of the elements of X (1).

(1) Operation performed along the 1st array dimension whose size is greater than 1.

Elementary Math: Arithmetic Functions

Introduction to MATLAB 53

Example
>> a = [1 2 4];
>> sum(a)

ans =

 7

>> diff(a)

ans =

 1 2

>> prod(a)

ans =

 8

⋮

⋮
>> cumsum(a)

ans =

 1 3 7

>> A = [1 5 3; 4 2 6];
>> sum(A,1)

ans =

 5 7 9

>> sum(A,2)

ans =

 9
 12

Elementary Math: Complex Numbers
Functions

Introduction to MATLAB 54

Complex arithmetic functions

i, j, 1i, 1j Imaginary unit. Use 1i and 1j for improved numerical
robustness (and to avoid possible name-shadowing with
user-defined variables).

complex(a,b) Defines the complex number z = a + 1i*b.

real(z) Returns the real part of complex number z.

imag(z) Returns the imaginary part of complex number z.

abs(z) Returns the magnitude of complex number z.

angle(z) Returns the phase angle of complex number z.

conj(z) Returns the conjugate of complex number z.
Alternatively, use z’ (operator form).

Elementary Math: Complex Numbers
Functions

Introduction to MATLAB 55

Example

>> a = (1/2)+(sqrt(3)/2)*1i

a =

 0.5000 + 0.8660i

>> real(a)

ans =

 0.5000

>> imag(a)

ans =

 0.8660

⋮

⋮
>> abs(a)

ans =

 1.0000

>> angle(a)

ans =

 1.0472

>> rad2deg(angle(a))

ans =

 60.0000

Elementary Math: Transcendental functions

Introduction to MATLAB 56

Trigonometric functions

pi Floating-point number nearest the value of 𝜋.

sin(x), cos(x), tan(x) Sine, cosine and tangent of x in [rad].
Use sind, cosd, tand if x is in [deg] units.

sec(x), csc(x), cot(x) Secant, cosecant and cotangent of x in [rad].
Use secd, cscd, cotd if x is in [deg] units.

asin(x), acos(x), atan(x) Inverse sine, cosine and tangent of x; return value
is in [rad]. Use asind, acosd, atand to get a
return value in [deg] units.

atan2(y,x) Four-quadrant inverse tangent of y and x; return
value is in [rad].

sinh(x), cosh(x),
tanh(x), sech(x), …

Hyperbolic functions.

deg2rad(x), rad2deg(x) deg-to-rad and rad-to-deg unit conversions.

Elementary Math: Transcendental functions

Introduction to MATLAB 57

Exponential functions

exp(x) Exponential of x: 𝑒%

pow2(x) Base-2 power of x: 2%

log(x), log2(x), log10(x) Natural logarithm, base-2 logarithm and base-10
logarithm of x.

expm(X) Matrix exponential:

exp 𝑋 = A
&'(

)*
1
𝑘! 𝑋

&

sqrt(x), nthroot(x) Square root and nth real root of x.

Elementary Math: Polynomial Functions

Introduction to MATLAB 58

Functions for polynomials

polyval(p,x) Evaluates the polynomial p at each point in x.

roots(p) Computes the roots of polynomial p.

poly(r) Returns the polynomial whose roots are the elements
of the vector r.

residue(b,a) Partial fraction decomposition of the ratio of the
polynomials a and b.

conv(a,b),
deconv(a,b)

Multiplication (convolution) and division
(deconvolution) of polynomials a and b.

polyint(p),
polyder(p)

Integral and derivative of polynomial p.

Elementary Math: Polynomial Functions

Introduction to MATLAB 59

Example
>> p = [1 2 1];
>> polyval(p, 0)

ans =
 1

>> roots(p)

ans =

 -1
 -1

>> poly([-1 -1])

ans =

 1 2 1

⋮

⋮

>> [R,P,K] = residue([2 1], [1 3 2])
R =
 3
 -1

P =
 -2
 -1

K =
 []

𝐵(𝑥)
𝐴(𝑥)

=
2𝑥 + 1

𝑥$ + 3𝑥 + 2
= ⋯

⋯ =
𝑅 1

𝑥 − 𝑃 1 +
𝑅 2

𝑥 − 𝑃 2 + 𝐾 =
3

𝑥 + 2 +
−1
𝑥 + 1

Linear Algebra Functions

Introduction to MATLAB 60

Linear Algebra Functions
det(X) Determinant of square matrix X.

rank(X) Rank of matrix X.

trace(X) Sum of diagonal elements (trace) of square matrix X.

inv(X) Inverse of non-singular square matrix X.

eig(X) Eigenvalues and eigenvectors of square matrix X.

poly(X) Characteristic polynomial of square matrix X.

svd(X) Singular values decomposition of matrix X.

Basic statistics

Introduction to MATLAB 61

Descriptive statistics – basic functions

min(X), max(X) Minimum/maximum elements of array X.

mink(X,k),
maxk(X,k)

k smallest/largest elements of array X.

mean(X) Average (mean value) of elements of array X.

var(X), std(X) Variance/Standard-deviation of elements of array X.

Note: if X has N elements, then the variance is normalized
to 𝑁 − 1 by default (unbiased sample variance).

median(X) Median value of elements of array X (i.e. middle value
separating the higher and lower halves of sorted X) .

mode(X) Most frequent value (mode) in array X.

sort(X) Sort elements of array X.

Basic statistics

Introduction to MATLAB 62

Example

>> a = [1 9 7 2 5];
>> min(a)

ans =
 1

>> max(a)

ans =
 9

>> maxk(a,2)

ans =
 9 7

⋮

⋮
>> mean(a)

ans =
 4.8000

>> var(a)

ans =
 11.2000

>> sort(a)

ans =
 1 2 5 7 9

>> median(a)

ans =
 5

Strings Functions

Introduction to MATLAB 63

Functions for Characters & Strings

strcat(s1, …, sN) Concatenates string s1,…,sN horizontally; use row
vectors concatenation [s1,…,sN] to preserve spaces.

strrep(s, old, new) Replaces all occurrence of the string old in the string s
with the new string new.

lower(s), upper(s) Converts string s to lower-case or upper-case.

strncmp(s1,s2,n) Compares the first n characters of strings s1 and s2.

Note: Comparison is case-sensitive; for case-insensitive
comparison, use strncmpi.

num2str(A) Converts the numeric array A into its character
representation.

str2num(s) Converts the string s to a numeric value.

Strings Functions

Introduction to MATLAB 64

Example

>> s1 = ‘Hello’;
>> s2 = ‘World’;
>> s3 = strcat(s1,' ',s2,' !')

s3 =

 'HelloWorld !'

>> s4 = [s1, ' ', s2, ' !']

s4 =

 'Hello World !’

>> strrep(s4, s2, 'Folks')

ans =

 'Hello Folks !’

⋮

⋮

>> a = [1, 2, 3; 4, 5, 6]
>> num2str(a)

ans =

 2×7 char array

 '1 2 3'
 '4 5 6’

>> str2num('123.456’)

ans =

 123.4560

