Calculus of Communicating Systems (CCS, Milner ’80)

Idea: set of processes \{ - executing in parallel
 - interaction / communication

do: Which kind of communication?

- ether:
 1. send is always possible (unbounded)
 2. receive is possible if a message is available (destructive)
 3. no order guarantee

- buffer
 1, 2 as before (bounded?)
 3. order of messages is preserved

- shared memory
 1. send \rightarrow write
 2. receive \rightarrow read
 3. order: no guarantee

idea: no distinction between
 → active entities → agents
 → passive → medium
Slogan: everything is a process

Processes: communicating via synchronous interactions (handshake)

Structure

Example: Computer scientist

coffee → no publications

Behaviour → CCS program

- Structure
- Interaction

Syntax of CCS programs

* Imachin (mil)

 O dead back

* Action prefixing

 given a channel (caim, coffee)

 caim . O
 coffee . O
 caim . coffee . O
In general given an action (input/output channel) \(\alpha \)
\[\Rightarrow P \]

* Process constant

\[\text{Break} \overset{df}{=} \text{coin} \cdot \text{coffee, 0} \]
\[\text{Clock} \overset{df}{=} \text{tick} \cdot \text{Clack} \]
\[\text{CM} \overset{df}{=} \text{coin} \cdot \text{coffee} \cdot \text{CM} \]

* Non deterministic Choice

given processes \(P \) and \(Q \)
\[P + Q \]
\[\text{CTM} \overset{df}{=} \text{coin} \cdot (\text{coffee} \cdot \text{CTM} + \text{tea} \cdot \text{CM}) \]
\[\text{CTM'} \overset{df}{=} \text{coin} \cdot \text{coffee} \cdot \text{CTM'} + \text{coin} \cdot \text{tea} \cdot \text{CM'} \]

different behaviour!

Exercise: Broken Clock

It surely emits one tick, then it can stop at any time

\[\text{Clock} = \text{tick} \cdot \text{Clack} \]
\[\text{BC} = \text{tick} \cdot (\text{BC} + 0) \]
\[\text{BC} + 0 = \text{BC} \]

\[\text{BC} = \text{tick} \cdot \text{BC} + \text{tick} \cdot 0 \]

\[\text{OK} \]
Exercise: \(CM = \text{coin} . \overline{\text{coffee}} . CM \)

failing machine:
- can input a coin without providing coffee
- at any time it can fail emitting signal \(\overline{\text{fail}} \)

\[
BCM = \text{coin} . BCM + \text{coin} . \overline{\text{coffee}} . BCM + \text{coin} . \overline{\text{fail}} . O
\]
\[
+ \text{coin} . \overline{\text{coffee}} . \overline{\text{fail}} . O + \overline{\text{fail}} . O
\]

or

\[
BCM = \overline{\text{fail}} . O + \text{coin} (BCM + \overline{\text{coffee}} . BCM)
\]

Parallel Composition

\[
CM = \text{coin} . \overline{\text{coffee}} . CM
\]

\[
CS = \overline{\text{pub}} . \text{coin} . \text{coffee} . CS
\]

\[
CM \parallel CS
\]

Restriction

\[
(\text{CM} \parallel \text{CS}) \setminus \{ \text{coin}, \text{coffee} \}
\]
* **Re labeling**

\[\begin{align*}
 \text{CHOC} & \equiv \text{com. choc. CHOC} \\
 \text{CHIPS} & \equiv \text{com. chips. CHIPS} \\
 \vdots \\
 \text{VM} & \equiv \text{com. item. VM} \\
 \text{CHOC} & = \text{VM} \left[\begin{array}{c} \text{choc} \\ \text{item} \end{array} \right] \\
 \text{CHIPS} & = \text{VM} \left[\begin{array}{c} \text{chips} \\ \text{item} \end{array} \right]
\end{align*}\]

* **Behaviour**

Processes will perform

\[\rightarrow \text{ state transitions}\]

\[\rightarrow \text{ determined by communications}\]

\[\begin{align*}
 \text{CS} & \equiv \text{pub. CS1} \\
 \text{CS1} & \equiv \text{com. CS2} \\
 \text{CS2} & \equiv \text{coffee. CS}
\end{align*}\]

\[\begin{align*}
 \text{CM} & \equiv \text{com. CM1} \\
 \text{CM1} & \equiv \text{coffee. CM}
\end{align*}\]

\[\begin{align*}
 \text{CS} \xrightarrow{\text{pub.}} \text{CS1} \xrightarrow{\text{com.}} \text{CS2} \\
 \text{CM} \xrightarrow{\text{com.}} \text{CM1}
\end{align*}\]

\[\begin{align*}
 \text{CM} & \mid \text{CS} \\
 \downarrow \text{pub.} \\
 \text{CM} & \mid \text{CS1} \xrightarrow{\tau} \text{CM1} \mid \text{CS2}
\end{align*}\]
We need to define rigorously:

- syntax
- operational behaviour
- program equivalence
- verification algorithms and tools