Computational Material Science
Lecture 7




Last time

Molecular dynamics simulations are used to reach a better understanding of
nanoscale phenomena, examples discussed were indentation, contact, friction

MD simulations describe bodies atomistically and they keep track of the
individual position of each atom over time.

Statistical mechanics provides us with a link between microscopic and
macroscopic thermodynamics variables

This allows us to calculate thermodynamic quantities in an MD simulation
through averaging over time

Averages should be taken after the simulation has equilibrated, i.e. when
quantities fluctuate around a constant mean



Equilibration

We want to perform a simulation for a solid crystal, with given atomic positions,
with a cubic shape and periodic boundary conditions, in an NVE ensamble. The
atomic interactions are described by means of a LJ potential, and initial
velocities are assigned that correspond to a reduced temperature 0.2.
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We run an equilibration and plot the macroscopic thermodynamics quantities K,
T,E, U, P
What do we notice?



How do we fix the inability of setting a specific temperature?
Rescaling velocities!

Desired temperature: 7 - prew T
Actual temperature: T(t) = 2K(t)/(3Nkp)

Then equilibration, the ensemble is still NVE
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At equilibrium

A ————— e 0.95
4.4} 0.90
| 0.85
. -4.6} .
> = 0.80
-4.7}
_agl 0.75
,4_9§ 0.70
-5.0! 0.65
0 5000 10000 15000 20000 0 5000 10000 15000 20000
time step time step
(a) U* /N (b) T+
346 ...................
-3.47
3.48
z
~-3.49
o
-3.50
-3.51
-3.52 -1.0k
0 5000 10000 15000 20000 0 5000 10000 15000 20000
time step time step
(c) E* (d) P*

The averages of the quantities can be obtained by simple time averaging in a
selected interval, over the time steps tmax

<U> = ( I/Tma.\')z U(r)

=1
The numerical data can be treated as experimental data, and one can calculate
the variance to get a measure of the fluctuations of U around the average

Tmax

Ugr = (l/Tmax)Z(U(T) — <U>)2 = ((U(t) — <U>)2> = <U2> - (U)2

=1
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A measure of the statistical error in a simulation is given by the variance of the
mean, which can be evaluated through the binning procedure. Average
quantities are given by:

Tmax TotTp

(U) = (1/Twax) YU (D). (U)i=—Y U)
=1

The variance of the bin energy is a measure of the quality of the data,
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Also one can measure the standard deviation, the square root of the
variance, and obtain for this data set:

(U*) = —4.651 £0.005  (P*) =—0.25£0.02
(T*) = 0.804 & 0.003 (E*) = —3.486 +3 x 107



Spatial correlation functions

In addition to info about T, K, U, MD simulations gives info on structure

The pair distribution function g(r), gives the probability of finding two atoms at

distance r. Does not depend on direction
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Integration of the function over a range gives the number of atoms in that range
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Spatial correlation functions

The pair distribution function

g(r) A2 <ZZ§U _’lj)>

is the probability density of finding a particle at a given distance r;; when another
particle i is at the origin

1) The calculation goes from 0 to r max (which cannot exceed L/2)

The range should be divided into n_b intervals, such that Ar = rac/ns
2) Determine distance between each pair and calculate  k = int(r;;/Ar)
3) g(k) is a count of how many times r_ij falls between kAr and (kK + DAr



Graded assignment 2

Use your MD code to model the melting of a solid FCC Cu crystal described
through the LJ potential.

l.

Check that you take a sufficiently small time step and that you do not have
other mistakes in the code by making sure the total energy is conserved.
Plot how temperature, density, pressure change during the simulation.

. Plot the atomic structure in the initial solid phase (after equilibration) and in

the final liquid phase (after melting and equilibration).
As an additional check, plot also the radial distribution function for the solid

and the liquid:
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This is the probability density of finding a particle at rij given that another particle 1
1s at the origin

Compare the results of your code with the ones you obtain when doing the same
simulation using LAMMPS (same number of atoms, same potential, same
materials...same everything).
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* Recap: what are dislocations?

» Continuum representation of dislocation fields

» Dislocation structures

Learning goals:

» Capability to describe dislocations in a continuum framework
through continuum fields

e Programming:

first DD simulation
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what is a dislocation?

Solid crystals are characterized by various types of defect,
introduced during production and/or manufacturing

Defects are classified based on their dimensionality: vacancies
and impurities are point defects (0OD), dislocations are line defects
(1D), grain boundaries are surface defects (2D), voids are volume
defects (3D).

Dislocations are line defects that have the important characteristic
of carrying plastic deformation in metallic solids.

Dislocations are classified based on their character: edge, screw,
and mixed dislocations. In a continuum they are fully described by
their Burgers vector, dislocation line and slip plane.



crystalline metals

BCC

FCC

HCP

Why metals and not semiconductors?

Cu, Al, Ni



DC is the dislocation line



screw dislocation
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experimental observations

» evidence of slip on preferential planes

« shear strength much smaller than theoretical strength
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observation of slip

Direction
of force

- Slip plane

Deformation occurs by slip along specific lattice planes
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Frenkel model

1924 discrepancy between theoretical and measured shear strength

Existence of dislocations already inferred before they could be seen
(1934 by Polanyi, Taylor and Orowan )

late 1950 observation of dislocation by TEM
T

Shear stress T T
''''' - - . max _.
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Frenkel model

Existence of dislocations already inferred before they could be seen
(1934 by Polanyi, Taylor and Orowan )

1924 discrepancy between theoretical and measured shear strength

late 1950 observation of dislocation by TEM
T

Shear stress T T
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dislocation motion

0O OOO000LL0000E
el easddd e d S o
1 0P OLLe0e0000 0

OOl 6O
1 PPl l sl B 06 g
1 00000000 -0d

13



dislocation motion
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The crystal lattice is not deformed: both the lattice parameter and

the volume remain constant

—~>implication for continuum theories and models: plasticity
conserves volume
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DC is the dislocation line

We seek a model for the micro-scale where the solid crystal can be

approximated as a continuum body, so that we do not need to store
and keep track of all atomic positions,

but we need to preserve the information on the dislocation
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Burgers circuit

There is no extra plane, the
circuit does not close at the
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1) the dislocation line has positive direction into the plane
2) the Burgers circuit is drawn in clockwise direction
3) the Burgers vector is drawn from finish to start (FS)

16



18



19



edge and screw dislocations
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mixed dislocation

mixed dislocation if b is neither parallel nor normal to the
dislocation line
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The Burgers vector is always the same, while dislocation
line vector changes while the dislocation changes
character
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dislocation loop in continuum theory

edge: b-t=0;

screw: b-t=-+b

e

the slip plane with its unit normal vector m;

e

the dislocation line as a parameterized line on this plane and with a local
tangent vector t;

® the Burgers vector b.

We now have only three parameters that define the
dislocation in a continuum
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equilibrium  :0;;; =0
elasticity :oi; = Lijuen

strains  :e;; = 1(uij+uj;)

Here, for simplicity: isotropic elasticity (shear modulus y, Poisson ratio v):

v
1 —2v

Lijgr =2p | 5 (8d 1 + 810 jx) + 0; O
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Volterra
dislocation
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What is the displacement field of a screw dislocaztion?

Volterra
dislocation

2D anti-plane shear problem: v?y; = 0

uy=ur =0, u3=uz(xp,x)

u3(x1,0%) —u3(x1.07) =b
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3 = % arctan(x,x1)
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ub  xo b xy

013 = — 023

27 X 2 +x02 2w X2 4 xo2

or in terms of polar coordinates (7,0,z = x3)
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ub - x» ub - xp

013 = — 023

27 X 2 +x02 2w X2 4 xo2

or in terms of polar coordinates (7,6,z = x3)

Hence, dislocations have a long-range effect.

This means that we cannot cut-off dislocation fields without
doing a significant mistake.
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plane strain problem: u=u(x,y), u_z=0
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_ —ub  yBx*+y?%)
Txx = 2m(1—v) (x2+ y%)2

o __ kb y(x? —y%)
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1

® Stress « distance
® Because of long-range effects, dislocations can interact to form structures

# Characterisation of structures by means of net Burgers vector

(a) (b)
netb=0 netb=T

33



ladder structure

Muhgrabi, Acta Metall 1983
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dislocation wall, tilt grain boundary
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Exponential decay away from the wall

This is a short-range field, which means that we can cut-off the

fields produced by a dislocation wall without doing a significant
35
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FIGURE 9.10

Constant value contours of the stress field o, of a single edge
dislocation. Dashed circles show distance from the origins. (From
Li (1963), Electron Microscopy and Strength of Crystals, p. 713.

FIGURE 9.11

The stress field o, of a vertical wall of two edge dislocations
spaced 28b apart. (From Li (1963), Electron Microscopy and
Strength of Crystals, p. 173. Interscience.)
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FIGURE 9.12
The shear stress field o, of an infinite array of edge dislocations. Unit of stress Gb/2(1 — v)D. (From
Li, Acta Metall. 8, 296, 1960.)
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FCC structure
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"
(I1l) plane —1 N - s 10 Dislocations move on the
N mostly packed plane in the
S/ mostly packed direction
[100] [101]
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Number of

Metals Slip Plane Slip Direction Slip Systems
Face-Centered Cubic

Cu, Al, Ni, Ag, Au {111} (110} 12
Body-Centered Cubic

a-Fe, W, Mo {110} T 12

a-Fe, W {211} (111) 12

a-Fe, K {321} (111) 24

Hexagonal Close-Packed _

Cd, Zn, Mg, Ti, Be {0001} (1120) 3

Ti, Mg, Zr {1010} (1120) 3

Ti, Mg {1011} (1120) 6

slip plane = a densely packed plane
slip direction = most densely packed direction

The slip direction corresponds with the direction of the Burger vector,
i.e. the shortest translation vector
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critical resolved shear stress

Dislocations move in response to the shear stress acting on the slip
plane, the resolved shear stress.

The resolved shear stress that acts on the slip plane Slip plane
due to force F equals: F normal

T =—cos(.cos A &
o

When the resolved shear stress becomes sufficiently
large, the crystal will start to yield. Dislocations start
to move along the most favourably slip system. The
minimum shear stress to initiate slip is termed
“critical resolved shear stress”:

Slip direction

-
-
Ve
" _#

Slip plane | .~

T =0_(cos¢.cosA)
crss ) » max
The onset of yielding corresponds with the yield stress
T
— Cris
¥ (cos.cos )
’ max

The minimum stress for yielding, if ¢=A=45°,then:
O- ! = ZTCTSS
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dislocation glide in thin films

Courtesy of Gehrard Dehm
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Take home messages

Dislocations are lattice defects in crystalline solids that
can be represented in a continuum framework by their slip
plane, line direction and Burgers vector

The dislocations can be represented, outside of their core,
as the elastic distortion of an elastic continuum

Dislocations fields have a long range effect, and therefore
dislocations attract or repel each other forming structures

Since the fields are long-ranged they cannot be cut-off
without an error

Dislocations glide on highly packed slip planes and
directions
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Dislocation dynamics

Let’s write a very simple DD code in 2 dimensions. Dislocations of edge
character can glide only along horizontal planes. A density of randomly
positioned dislocations are the starting point of the simulations.

There are no external fields, so that the dislocations move only due to the
interaction between their stress fields.

The section of the crystal is represented by a square.
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Dislocation dynamics

Let’s write a very simple DD code in 2 dimensions. Dislocations of edge
character can glide only along horizontal planes. A density of randomly

positioned dislocations are the starting point of the simulations.
There are no external fields, so that the dislocations move only due to the

interaction between their stress fields.
The section of the crystal is represented by a square.

create initial positions

input: n = number of dislocations (assumed to be even)
a = size of dislocation cell

output: (x,y) coordinates and Burgers vector b for each dislocation

o® 0P 0° 0° 0° o° o° o°

function[x,y,b] = initDD(n,a)
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create initial positions

input: n = number of dislocations (assumed to be even)
a = size of dislocation cell

o® 0 o o 0° o° o o°

function([x,y,b] = initDD(n,a)

% created scaled coordinates in an fcc lattice
X = rand(n,1)*a;
y = rand(n,1)*a;
% assign b
b = zeros(n,1);
for i=1:n/2
b(i) = 1;
end

for i=n/2+1:n
b(i) =-1;
end

scatter(x,y,50,b,'d"); axis square;

output: (x,y) coordinates and Burgers vector b for each dislocation
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sumDD.m

Now sum over the forces that dislocations exchange with each other.

This 1s similar to the force calculation we did for the atoms in the MD code.

In the absence of external loading the dislocations glide due to the Peach-
Koehler force induced by the other dislocations.
The force that one dislocation exerts on the other is:

F.(1)=bba, ())

i~ xy

2 2 _y? (x2—y?
Fx(f)— Gb bjb,' ij(xji yj2/) |:> Fx(i)zbjbile(le yjl)

“2r(-v) (xi+y7) (i +yi)

%unction[fx,fmax]= sumbDD(n,a,rc,x,y,b)
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