Computational Material Science
Lecture 5




Last time

* Molecular dynamics simulations treat atoms as if they were
Newtonian particles

* The goal of an MD simulation is to track the trajectory of all
atoms while the system evolves in time. Atoms respond to
external forces and to forces exchanged with other atoms.

« The equation of motion of all atoms is computed numerically
using an integration scheme of the type of the Verlet algorithm.



Today

« Theoretical basis of molecular dynamics simulations

« Connection between macroscopic quantities and
microscopic variables (statistical thermodynamics)

« Time averaging and ensemble averaging

Learning goals:

« Can distinguish and relate macroscopic and microscopic
variables

« Capability of writing a molecular dynamics program.



The Hamiltonian

The Hamiltonian is a function of the total energy in a system.
If the system is Newtonian the potential energy only depends on the

coordinates, and the kinetic energy only on the momenta. In this case the
Hamiltonian takes the simple form:

He", r")=Kkp")+Uux")

In a Newtonian system the energy is conserved, which means that E is constant in
time:

dE B dH —0
dt  dt

Demonstrate that for a one d.o.f. the energy is conserved



The Hamiltonian

The Hamiltonian is a function of the total energy in a system
If the system 1s Newtonian, the potential energy only depends on the coordinates, and
the kinetic energy only on the momenta. In this case the Hamiltonian is very simple:

He", r") = Kkp")+Uux")

Conservation of energy: ak - dH =0 very important check in MD

dt dt simulations!

Demonstrate that for a one d.o.f. the energy is conserved:

| I
H = ~mv” + U(x)

dH dv dU
— = mv —
dt dt dt
dU dx
=mva+ ——=mva — Fv
dx dt

= mva — mva = 0,



Hamilton’s equations of motion

» The dynamical evolution of a system of NV particles in a conservative force
field is described by Hamilton’s equations:
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P It is convenient to bundle the positions and momenta into two generalized
vectors:

q:{r%7 r%? 7’%, r%a“wré\,}:{qla"'vqn}a n:3N

p= {p%’ p%) p%? p%’ ) pév} — {pl?"',pn}

» The set of all possible values of (q,p) forms a 6N-dimensional space called
phase space I.

PA
» The dynamical evolution of a system -/
is described by a trajectory (q(t). p(t)) (q(t), p(1))
through phase space. )q

6N-dimensional
phase space I'




Properties of trajectories of Hamiltonian systems

» The trajectory through phase space of a Hamiltonian system has some
important properties:

|. The solution (q(%),P(?)) to Hamilton’s equations is unique.

Implication: Only a single trajectory passes through each point in phase space and
therefore trajectories cannot intersect.

2. The Hamiltonian H is constant along a trajectory.

Implication: The total energy of a Hamiltonian system is conserved.

Proof: The time rate of change of a time-independent Hamiltonian is

dH ~~[0H.  OH |
— o ,‘.1' - "i f— . .‘Z' .'i. — () -, ,H — constant.
dt ; [i)‘ji qi T (:)j)z'.j)' ; (—piqi + Gipil O

3. Poincaré recurrence theorem: Given sufficient time, a Hamiltonian system with a
bounded phase space will return to a state arbitrarily close to its initial state.

Implication: Interesting philosophical questions regarding reversibility. However, for
macroscopic systems, a “sufficient time” exceeds the age of the universe.



» The only case that can be visualized is a | D system like a harmonic oscillator
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» Lennard-Jones oscillator is qualitatively the same, but with asymmetric trajectories.
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Examining the reliability of a simulation

A key question in an MD simulation is whether the algorithm used to integrate
the equation of motion is of sufficient accuracy.

If the trajectories of a few atoms have errors it is generally no problem as long
as the average quantities in the system are correct.
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Examining the reliability of a simulation

A key question in an MD simulation is whether the algorithm used to integrate
the equation of motion is of sufficient accuracy.

If the trajectories of a few atoms have errors it is generally no problem as long
as the average quantities in the system are correct.

0.5]

0.4

0.3

E(t)

0.2

0.1

0.0l : i .
0 100 200 300 400 500 0 100 200 300 400 500
time step time step

Which simulation is wrong here? What could be wrong?

An excessively large time step (first thing to check), a poor integration scheme for the
equations, an error in the programme.
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Although constant on average, the energy fluctuates over time around its

average at equilibrium.
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Schematics of an MD code

Atomistic model; requires atomistic microstructure and atomic
position at beginning

Step through time by integration scheme
Repeated force calculation of atomic forces
Explicit notion of chemical bonds — captured in interatomic potential

Potential energy

; _ Calculate acceleration
function

of each atom

Calculate force Calculate velocity
acting on each atom of each atom

Iniitial s Move all atoms
positions to new positions

Flow diagram of MD simulation
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Initial conditions for an MD simulation

Problem definition:

1) Material

2) Potential

3) Number of atoms, volume, and shape of the unit cells
4) Specify boundary conditions

5) If somewhere periodic ensure commensurability

6) Make sure the number of atoms is sufficiently large to be
representative of the system studied

7) Check on symmetries

8) Make a smart choice of the initial positions

9) ...and of initial velocities (e.g. the Maxwell-Boltzmann distribution)
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Steps in an MD simulation

Warning: wait until equilibrium is reached before taking any averages!

1) Initialize positions and momenta
2) Calculate the initial K, U, and forces on each atom Fi
3) For n_equil time steps:
« Solve for {r;(t + ét)} and for {pi(t + 1)}
 Calculate K, U, E, f i
« Check for drift of values
« When equilibrated, restart
4) For n time steps:
« Solve foi{r;(t 4+ 8t)} and foi {pi(t + 61)}
« Calculate K, U, E, f_i and other quantities of interest
« Accumulate values of K, U, etc. for averaging
5) Analyse data: averages, correlations...
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Let’s take Lennard-Jones

"o\ 2 o
P(rij) = 4e (—) - (—
L\ 7ij Tij
1\ 2 1
s =4(=) - (5
L\ 7 Tij

Value

In reduced units

Potential energy
Temperature
Density
Pressure

Time

=UJe

T*

= kBT/G

o* = po’
P* = Po3/e

t*=t/t,, wheret, =0o

mfe

kg =8.617 107>

eV /K
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Phase space and trajectories

The time dependent properties of a system made of N atoms are fully defined
by the 6N mechanical degrees of freedom of the system (microstate):

(ry,rp,r3, ..., ry) (P1, P2, P3s---5sPN)

These are 6N coordinates in phase space. The locus of the points in phase space is
called trajectory.

18



Phase space and trajectories

The time dependent properties of a system made of N atoms are fully defined
by the 6N mechanical degrees of freedom of the system (microstate):

(r{,.ro,r3g,...,ry) (P1. P2, P35 -+, PN)

These are 6N coordinates in phase space. The locus of the points in phase space is
called trajectory.

One coordinate of
one atom 1n an

Harmonic . -
, z MD simulation
oscillator ,
over a fraction of
femtosecond
! e e (collisions+long

range effects)

How do we make sense out of all the information we will produce through the MD
simulation, i.e. the trajectories of all those atoms?
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Connection to thermodynamics

Although in MD we can keep track of the motion of N atoms, knowledge of their
individual trajectories does not give us much information on the properties of the full

crystal unless we rely on statistics. Here statistical thermodynamics comes out VERY
handy.

Basic thermodynamics quantities:

N = number of particles E = U + K = internal energy

V = volume S = entropy

P = pressure H = E + PV = enthalpy

T = temperature A = E — TS = Helmbholtz free energy

1 = chemical potential G = E — TS + PV = Gibbs free energy

E, H, A are extensive quantities, T, P, u intensive.
Statistical mechanics relates macroscopic properties of a system with microscopic

variables through averaging. It links the degrees of freedom of atoms in a system to
the thermodynamic quantities that describe it (pressure, volume...)

Statistical thermodynamics describes the behavior of systems in equilibrium
20



Statistical mechanics

Macrostate: the thermodynamic state of a system. It depends on the constraints acting
onit: (N, V, T) or (N, P, T)

Microstate: instantaneous value of internal variables (at time ¢ the positions and
momenta of the N atoms). Microstates change with time as the system evolves

» We are interested in predicting a macroscopic observable A from an
associated phase function A(q, p).

We postulate:

t
A=A4= lim l/ A(q(7),p(7))dr
Jo

f—ox

Examples of phase functions:
Physical Significance A A(q,p)

Temperature kT (2/3N) >, Ip*||?/2m™ = 2T /3N

Pressure p (1/3V) >, [l /m™ — q* - VgaV(q)]




Ensemble average

To connect microstates with macrostates the most intuitive idea is to take time
averages:
[ . N N
E,ps = (E) = - f E(t)dt E(t)= K () +Ux"1))
o JO
One can also keep track of the number of times a system goes back to a given
configuration

. ,
_— J - i 4
Neconfig "\l'ml_,f ig Neo ip

I
(E) = N Z ngE, = Z@Ea Z Pa =
(Uﬂ] Lg a=1 J/ a=1 \ probablhty =1
number of time a system density

was in a given configuration
The probability density will depend on the constraint imposed on the system.
Instead of following the same system for a very long time, we create a large number

(ensemble) of 1dentical systems and let them evolve independently. Although identical,
systems will be in different states.

The 1dea of Gibbs was to substitute averages in time with averages over configuratiess, i.e.
averages over the number of states that the system will be 1n.



Ensemble average

For continuum systems the sum becomes an integral. So to be proper:

» Define as an ensemble, the set of all microstates (g. p) that are consistent
with the applied macroscopic constraints (e.g. N, I E, T').

» Define a phase average as

(A: f) = / / / / (q.9)F(q.p) day - -~ dandp - dpn
qi nvp Pn

—/F A(q.p)f(q.p)dqdp

where f(q.p)dqdp = probability of finding the system in region

(lg.q +dq|,[p.p+dp])
\___) distribution function, which satisfies: / f(q.p)dqdp =1
Jr
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Ergodicity

» A basic assumption at the heart of statistical mechanics:

Ergodic hypothesis: phase averages = infinite time averages

(A) =

A= lim1
t

t—o0

t

A A(q(T),p(T))dr

Accessible region
L\ of phase space

ﬁ?

* This hypothesis was initially motivated by the assumption
that Hamiltonian systems are ergodic, i.e. that given
sufficient time a system will visit all points in phase space
consistent with the imposed macroscopic constraints.

This was proven to be impossible independently by Rosenthal and
Plancherel in [913.

—
=

—

e Current understanding is based on the law of large numbers = °4]

and the theory of the thermodynamic limit.

As the number of degrees of freedom increases the
distribution function collapses to a delta function.Thus, the

phase function being averaged is very close to the observable.
This is in fact the essence of equilibrium.

@ q

1 -
081 [ .-z ;"‘;.
SR F oo
06 [ |[===mmzs | L")
el I
A B
0.2 i ',-';‘" .\:‘ . .
) tt ..-y" , : .'\":.-": s
o 1 2 3 4 5 6 7T
AP

24



Weighting functions

Consider the probability p, of being in a certain state. We cannot tell which factors
influence the probability, how this probability depends for instance on thermodynamic
variables.

Let’s assume that we can introduce a weighting function w,, which will tell us how
thermodynamics influences the probability, and we assume the probability to be

proportional to the weighting function

w 1 . .
Pa = L= —w, partition function: Q = Z W
ZCI Wq Q
] Nm/: fig
Given that: E) = n,E, I
< > N('(mj'l'g Z ‘ Z pc

a=I1 a=|

I
The average of a quantity is then given by: (B) = 5 Z w, B,

(03

Each ensemble is characterized by a given set of constraints and by different weighting

functions and partition function.
25



Canonical ensemble

° e ©® [ The canonical ensemble is a collection of systems with
¢ %, s ber of particles, vol d t
® o %o/ constant number of particles, volume, and temperature
d (NVT) -
° o0
o o 4 ol o
° °
S ey, We can evaluate the relative probability of two states (configurations):

. —BEy*
Par _ € 0 _ o~ B(Ear—Eq)

Do 0 e PE

I o
<E> — e—l:u//\bJ Ex
Onvr Z ‘

oy

Onvr = | e~ HE" P/ kT gpN gV

Link to thermodynamics through the Helmholtz free energy: A = —kgT In Qyyr

If the potential energy depends only on position the two integrals over
momenta and positions can be separated and multiplied with each other 26



The integrals can be evaluated analytically

1
Only positions (V) = —— / e VTR (2N ydeN Znvr = / o~ U@ ksT g N
NVT

S exp(=K(@")/ kg T)K (p")dp"

Only momenta (k) = [exp(—K (pV)/kgT)dp"

[2 exp(—ax)dx = /7 ]a

Gaussian integral

Important result! Used in MD to calculate the temperature

3
p N -
ressure = kT — 3_V< gr,— : V,-U)

P = ﬂkBT——(ZZ "dr,,)

i=l j=i
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Microcanonical ensemble

The microcanonical ensemble is a collection of systems with constant particles,
volume, and energy (NVE), a standard choice in MD simulations.

wyve = 8(H", pY)— E)

All states for which E is the prescribed value are equally probable, all other states forbidden

Q‘,\.' VE = / (S (lH( rN o I)N ) — E)dr"\:de

N 'h3N

connection with
S=kplnQnve thermodynamics

What 1s constant and what fluctuates at equilibrium?
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Microcanonical ensemble

The microcanonical ensemble is a collection of systems with constant particles,
volume and energy (NVE). This is the ensemble of standard MD simulations

wyve = 8(H", pY)— E)

All states for which E is the prescribed value are equally probable, all other states forbidden

Q‘,\: VE = / 5 (lH( rN o l)N ) — E)dl‘Nd[)"’V

N 'h3N

connection with
S=kplnQnve thermodynamics

What 1s constant and what fluctuates at equilibrium?

N,V, E constant, K, U, P, T fluctuate around an average value

29



Comparing canonical and microcanonical

6
5
')
g hd ~ €, —Ng
3 ~ 9,
y U
1 2 3

System defined by the instantaneous microstate {E1, E2, E3}
The total energy is E=E1+E2+E3=¢g, (n1+n2+n3)=9¢,

Suppose the instantaneous state is measured M times, then the probability of an atom
to be in state n 1s P» : the number of times the atom was in state n divided by M

The average energy for each atom is  Pn €

The average energy is  (E) = Np,€,

For the microcanonical ensemble: E constant-> allowed states are {3,3,3}, {2,4,3},

etc. all with equal probability
Consistently with our idea of entropy the number of allowed states increases with E

For the canonical ensemble: all micro-states are possible but they have different
probabilities. The probability of a microstate ois exp(—BEy)/ Q.
The probable states are subset of all states.

Q=) exp(—BE,) 30



From statistical mechanics to MD

Important for MD simulations:
By keeping track of the velocities and positions of the atoms during the simulations

for a certain time at equilibrium, we gain information on the macroscopic quantities
of interest, as temperature and pressure.
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Take home messages

Statistical mechanics provides us with a link between microscopic and
macroscopic thermodynamics variables

This allows us to calculate thermodynamic quantities in an MD simulation
through averaging over time

Averages should be taken after the simulation has equilibrated, 1.e. when
quantities fluctuate around a constant mean

32



1. Initialize positions (done!) and velocities (done)

2. Initialize energies (almost done) and forces (to be done today)
3. Apply the Verlet algorithm to find trajectories of atoms (next class)

4. Calculate forces and energies at new positions (next class)

33



Ne £-00031 el/ 0= 2.74 i

Xe £-009 el 5= 343 A

C & =0.415eV o 2,277 A

ky= 8017 -40 " eV /k

T= 0.8x00031 eV _ _ 28 3K

ﬂ/& $. 617 x 0w’V /K

' XQ 1 03XOo2e\/ _16537K
T1=10 867 xi5% ek

> T=03%x0.4I5 e/ _38h2 Kk

S bIF Xl e/l

Value In reduced units
Potential energy =Ule
) Temperature =kpT/e
Density p* = po’
Pressure P* = Po3/e
Time t* =1/t, wheret, = o/m/e
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functionl[n,sx,sy,sz,vx,vy,vz]l= initLIMD(nc,tin)
% created scaled coordinates in an fcc lattice
nc=>5;
tin=0.6;
ncell=4; % number of atoms in a cell
x=[0 .5 0 .5];
y=[0 .5 .5 0];
z=[0 @ .5 .5];
i1=0;
n = ncellxnc”"3;
sx=zeros(n,1);
sy=zeros(n,1);
sz=zeros(n,1);
vx=zeros(n,1);
vy=zeros(n,1);
vz=zeros(n,1);
for k=1:nc
for 1 = 1:nc
for m = 1:nc
for i = 1:ncell

11=11+1;
sx(il) = (x(i) + k-1)/nc;
sy(il) = (y(i) + 1-1)/nc;
sz(il) = (z(i) + m-1)/nc;
end
end

end
end
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% pick velocities from Maxwell-Boltzmann distribution
% for any temperature we want.
% Then we will calculate the kinetic energy and thus
% the temperature of these atoms and then we will
% reﬂcale the velocities to the correct temperature
k =0;
px = 0;
py = 0;
pz = 0;
for i=1:n
vx(i) = sqrt(-2xlog(rand))xcos(2xpixrand);
vy(i) = sqrt(-2xlog(rand))xcos(2xpixrand);
vz(i) = sqrt(-2xlog(rand))*cos(2xpixrand);
px = px + vx(i);
py = py + vy(i);
pz = pz + vz(i);
end
histogram(vx);
hold;
% set net momentum to zero and calcuate K
px = px/n;
py = py/n;
pz = pz/n;
for i=1:n
vx(i) = vx(i)-px;
vy(i) = vy(i)-py;
vz(i) = vz(i)-pz;
k = k + vx(1)72 + vy(i)™2 + vz(i)"2;
end
k = .5%k;

% kinetic energy of desired temperature (tin)
kin = 3%nxtin/2;

% rescale velocities

sc=sqrt(kin/k);

for i=1:n
vx(i) = vx(i)xsc;
vy(i) = vy(i)*sc;
vz(i) = vz(i)x*sc;
end

histogram(vx);



Calculate the energy (lattice sums) and the forces on each atom, for a periodic

FCC crystal with interatomic interactions described by Lennard-Jones. Use the
minimum image convention to compute the forces.

Reminder: Lennard-Jones potential and forces in reduced units

| 12 1 6
"’(’v):“[(ﬁ;) ‘(?:;-)]
. 24 1 12 1 6 .
e (I N
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Force acting on an atom at a given time for a Lennard-Jones potential in
reduced units:

% we calculate force (fx,fy,fz), energy (u), and

% part of the pressure (w)

%

function[u,w,fx,fy,fz]= fLJsum(a,n,rc,Xx,y,2z)

% set force components, potential energy, and pressure to 0
$ fx,fy,fz are each vectors, with an entry for every atom
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we calculate force (fx,fy,fz), energy (u), and
part of the pressure (w)
function[u,w, fx,fy,fz]= fLJsum(a,n,rc,Xx,y,z)
% set force components, potential energy, and pressure to 0
fx=zeros(n,1);
fy=zeros(n,1);
fz=zeros(n,1);

o
)
o
©

u=0;

w = 0;

for 1 = 1:n-1 % note limits
ftx = 0;
fty = 0;
ftz = 0;

for j=i+l:n % note limits
% mimimum image convention
dx = x(j) - x(1);

dy = y(j) - y(i);
dz = z(j) - z(i);
dx = dx - round(dx);
dy = dy - round(dy);
dz = dz - round(dz);

dist = a*sqrt(dx™2 + dy~2 + dz"2);
if dist <= rc
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if dist <= rc
dphi = (2/dist”(12)-1/dist"6);

ffx
ffy
ffz
ftx
fty
ftz
phi
u:
w =

dphi*a*dx/dist"2;
dphi*a*dy/dist"2;
dphi*a*dz/dist"2;

ftx + ffx;

fty + ffy;

ftz + ffz;
(1/dist~(12)-1/dist"6);
+ phi;

+ dphi;

= cuunnonnn

% add -f to sum of force on j

end
end
% sum up
fx(1)
fy(1)
fz(1)
end

u = 4*u;

W = 24*y;

for i=1:n
fx(i) =
fy(i) =
fz(i) =

end

need to multiply LJ by 4 and
also need to correct sign in f

fx(j)
fy(j)
fz(j)

fx(j) - ffx;
fy(j) - ffy;
fz(j) - ffz;

force on 1 (fi)
fx(i) + ftx;
fy(i) + fty;
fz(i) + ftz;

-24%fx (1) ;
-24*Ty(1);
-24%fz(1);

force and pressure

40



