Computational Material Science
Lecture 3




Last time

Often simulations require summing over various objects. For instance
one can calculate the potential (cohesive) energy of a crystal summing
the contribution of all atoms.

Crystalline solids are held together by interatomic forces. Each
material is characterized by different type of bonds that involve pairs
of atoms, triplets,..., and electrons.

The simplest interaction between atoms is that between rare-gas solids,
because they have closed shells and their electrons do not contribute
much to the bonding.

The Lennard-Jones potential was introduced to model the cohesive
energy of such solids. Due to its simplicity and flexibility it was then
applied to many more solid types.



Today: how do we model solids?

Interatomic potentials

e Pair potentials:

- Lennard-Jones potential

- Mie potential

- Morse potential
« The Coulomb potential for ionic solids
« The EAM potential for metals

 Cut-offs for long and short-ranged potentials

Periodic boundary conditions

Learning goals:

Capability of selecting the correct potential to study a given material
Awareness of main strengths and limitations of interatomic potentials
Capability of writing a computer program to calculate the cohesive
energy of a crystalline solid on a periodic unit cell



The Lennard-Jones potential

While developed to model closed-shell atoms it has been used to model almost
anything....

Goal: create a potential to describe the interaction energy @(r) between two
spherical atoms distant » (input) which can be valid for many materials
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For calculations, handy to use scaled (or reduced) units: ¢* = ¢ /€ and r* =r/o
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Comparison to experimental values
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f Argon: experiments (solid) vs Lennard-Jones (dotted)
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€ (eV) 0.0031 0.0104 0.0140 0.0200
o (A) 2.74 3.40 3.65 3.98

Weak bonds, low melting points



OK cohesive energy for solids:
The basic structure is cubic (simple cubic, FCC, BCC)
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Spring-ball model for the llustration of elastic

behaviour of solids.

Potential energy of a spring:

U=1/2kx?




Thermal expansion

The atomic distance is
defined as the distance
between the centers of the
bonded atoms.

Strong bonds have short
distances

Distance between primary
bonds are 0.1-0.2 nm

The interatomic distance is
constant at OK.

If temperature increases so
does the interatomic
distance, while the atoms
vibrate

Ceramic materials have a
deep and narrow well: strong
bonds and small thermal
expansion

Forza F

Distanza media, a T -
< > razione .

O

Oscillazioni termiche

; / Energia U = { Fda

I Distanza, a

Rigidezza |

Compressione delfla molla S

Temperalura
crescente

I
I
| ; |
| Energia U :

Tgee=f==decedeeBecccccnna
Distanza media
tra gl atomi
[ Satatnl v Saam e e * At T in oscillazione a Ty
H------%---00%----,
Tg-ecee-a-

: Distanza, a




The Mie Potential

Improvements to the Lennard-Jones potential can be made by making the exponents
12 and 6 in the Lennard Jones potential adjustable parameters
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The Mie potential has four parameters and 1s therefore more flexible than the L-J.
The lattice sums for potentials in the form 1/ are obviously valid also for the Mie
potential.
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The Morse potential

» Another widely used pair potential is the Morse potential.

» Published in 1929 by Prof. Philip M. Morse
* Morse, P.M,, Phys. Rev., 34, 57 (1929)

» Developed as a simple model for anharmonicity
effects in the quantum mechanics of diatomic

molecules (reproduces allowed energy levels
observed experimentally).

A
Prof. Philip Morse

Reprinted with permission, AIP Emilio Segré
Visual Archives.

» Functional form:

¢(r)=c¢ [(1 - e—(r—re)/a)2 B 1] os)

Lennard-Jones
Morse

i
1
|
|
]
I
|
\
\
1

¢/e

* Three fitting parameters (g, 0, r:): l
¢ = energy scale (sets cohesive energy) o9
o = well width (sets bond stiffness)

L
re = location of minimum (sets equilibrium spacing)
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First four neighbor shells in a square lattice: R=a(nix +nyy)

nearest neighbors are denoted by a (O,
next-nearest neighbors by O, the third
neighbor shell by A, and the fourth shell by a <.

Ueery = 4®(a) + 40(V2a) + 49(2a) + 8®(V5a) + -

Then you’ll need to divide by 2.
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The interaction terms, ¢(r), decrease with distance

Finite range potential: if r is large, then the value of ¢

is sufficiently small that we can truncate the sum at some

cutoff distance r., with only small to moderate error.

Cutoft:
We exclude all interactions between objects whose separations are greater than r,.

What 1s the error?
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Error using a cutoff

We can estimate the error by counting the number of atoms in a shell of width
or at distance r from the origin, assuming the volume of the shell to be the
surface area of a sphere times the width or:

4rrip r p=density of atoms in the shell

The net contribution to the interaction energy of the objects in that shell is

SU =~ 4mr?p ¢(r) dr

integrating over all the interactions now excluded from the sum through

the introduction of a cutoff distance:
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This estimate of the error can also be used as an analytical correction to the

potential calculated using the cut-off
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Error for short-ranged potentials

The cut-off can be used for short-ranged potentials and the error can ba
calculated by substituting the potential function in

o )
AU =~ 471,0[ reg(r)dr

Many interatomic potentials have the form: d(ryoc1/r”
Short range

armp p3n arnp p3n aslongasn > 4
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when n = 3 the integrand goes as 1 /r, whose integral is log(r), which diverges at infinity.

The integral also diverges for n < 3.
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Short-ranged potentials

Implementation:

We only want to calculate U,.; = T Y Y ii(|IR+r; —r|)

i=1 j=I
for atoms distant from the atom of 1nterest less than the cutoff.

In practice, one wants to avoid the computational inefficiency of calculating
the distance from the atom of interest to all other atoms at every time
increment.

It 1s customary to construct a neighbor list for each atom that is then updated
during the simulation. One starts by making a
list of atoms distant r,-r, from atom 1.

If no atoms move more than r,-r. there

is no need for an update.
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Long-ranged potentials

1/r" with n <3

A good example of a long ranged potential is an 1onic solid. Its properties are

governed by electrostatic interactions of the form

qiq i/ rij

Let’s consider the evaluation of the
electrostatic energy.

Suppose we have N point charges in a
periodically repeating unit cell, then the total
electrostatic potential energy is:

Potential Energy

like-charges (repulsive)

opposite (attractive)

n n

777

i=1 j=I

qiq j

IR+r; — 1

17



Ionic solids

Tonic solids consist of closed-shell 1ons with little
charge in the interstitial region.

N N
I
U= - / ii(ri )
2 ; ; (d)j ) electrostatic
(Coulomb)

interaction
—ar C
¢(r) = Ae ™ — — Born-Meyer
-
Electric Field
Ionic systems have
large electric field \ shell model
—> Distortion of the » representation
electronic distribution binding energy

1/2kox? 18



» The Born-Mayer potential is a pair potential which

describes ionic crystals well.

* lonic bonding is obtained when combining alkali, alkali-
earth and some transition metals with group VI and V|

elements, e.g. NaCl.

» Published in 1932 by Max Born and Joseph Mayer:

* Born, M. and Mayer, ). E., Z Physik, 75, | (1932)
* Born, M.and Mayer, J. E.,J. Chem. Phys., 2,252 (1934)

» Functional form:

Max Born

Wikipedia (public domain)
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where Z = atomic number of an ion
e = electron charge

= = number of electrons in outer shell

short-range repulsive term

o, A, p = fitting parameters that
depend on the ionic species



How good is the agreement with QC
calculations?
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This is the comparison of the pair potentials with quantum
chemical calculations of the cohesive energy of a few diatomic
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Spherically truncated Coulomb potential

This is a simple approximate method for Coulombic interaction to cut-off a long-
ranged potential:

Use cut-off + approximation of the neglected terms

Correction: the overall system must be charge
neutral. So if the charge inside the cut-off is:

I','j <re

Qi = Z‘/j

J

The net charge of the remaining atoms in the
system must be —Qi.

Z (f q9idj qui)
(ou ‘ i re
=1 JFi
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QUESTION:

How does the potential energy curve looks like if one uses a cutoff,
without correcting terms?
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Issues with cut-offs

Discontinuous
cutoff

Q‘)'(T) '

Teut

Energy and gradient (force)
discontinuous at cutoff.

Can cause convergence
problems in static calculations.

Can cause loss of energy
conservation in dynamic calcs.

Shifted cutoff

Energy continuous; gradient
(force) discontinuous at cutoff.

Can cause convergence
problems in static calculations.

Discontinuity in elastic
properties

Smoothed cutoff

o(r)=¢(r)+ar+0b

Energy and gradient (force)
continuous at cutoff.

Changes shape of potential
everywhere, so is essentially a
new potential.




Take home messages

We model solids by using interatomic potentials, obtained by an educated
guess on how the interaction between atoms should be.

While pair potentials like Lennard-Jones work well for rare gases, we need
progressively more fancy potentials for more complicated systems, like 1onic
solids, metals and covalent solids, for which charges, electron clouds or
directionality of the bonds are important.

It 1s often desirable to cut-off potentials at large distances to limit

computational time. Short-ranged potentials are easily cut and do not need a
compensation for what is cut out. Long-ranged potential cannot be simply cut.
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Assignment 1

Write a MatLab function to calculate the energy per atom of the
FCC (and BCC) crystal you created last time using the Lennard-
Jones potential for a couple of values of the lattice constant.
Check that the outcome is reasonable. What should you do?

Check how many atoms you need for a converged result.
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%

s compute energy of the unit cell with Lennard-Jones potential

function[ucell]= latsum(a,s)

ucell=0;
nc=2;
a=1

[s,11]=fccmke(nc);

n=11;

o

en
end
ucell
ucell

= s(j,1)-s(i,1);
yij = s(j,2)-s(i,2);
Zl.] = s(jl3)-s(il3);
dist = a*nc*sqrt(xij™2+yij"2+z1ij"2);
if dist>0
phi=4*(1/dist”~(12)-1/dist”6); % Lennard-Jones in reduced units
else
phi=0;
end
ucell = ucell + phi;

ucell/2;
ucell/n; %lattice energy per atom (in reduced units)



Assignment 2

Calculate the potential energy for various values of the lattice
constant and plot the energy as a function of the distance.
What value of a gives the minimum of the potential energy?
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interatomic potential

Lennard Jones potential
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function[ucelll= latsum(n,s)
nc=5;
amin=1.2;
amax=2.3;
step=0.005
nsteps=round( (amax—-amin)/step)+1
[s,il]l=fccmke(nc);
n=1il;
m=0;
ucell=zeros(nsteps,1);
for a=amin:step:amax
m=m+1;
b(m)=a;
for 1 = 1:n
for j=1:
X1ij s(j,1)-s(i,1);
yij = s(j,2)-s(i,2);
zij = s(j,3)-s(1,3);
dist = axncksqrt(xij~2+yij~2+zij~2);
if dist>0
phi=4x(1/dist”~(12)-1/dist”6); %(Lennard-Jones)
else
phi=0;
end
ucell(m) = ucell(m) + phi;
end

I n s

end

ucell(m)

ucell(m)
end
plot(b,ucell)

ucell(m)/2; %because I am double counting contributions
ucell(m)/n; %lattice energy per atom (in reduced units)



Introduce a cut-off value for the potential.
Check what 1s the effect of different cut-off distances on the results.
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function[ucell]= latsum(a,rc,s)
ucell=0;
nc=>5
a=1
rc=20
[s,11]=fccmke(nc);
n=11l;
for 1 = 1:n-1
for j=i+l:n

xij = s(j,1)-s(1i,1);
yij = s(j,2)-s(1,2);
zij = s(j,3)-s(1,3);

dist = a*nc*sqrt(xij”™2+yij~2+z1j"°2);
1f dist <= rc
phi=4*(1/dist”(12)-1/dist”6);
else
phi=0;
end
ucell = ucell + phi;
end
end
ucell = ucell/n;
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Apply to the code periodic boundary conditions.
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function[ucell]= latsum(a,rc,c,s)

ucell=0;

nc=5;

a=1;

c=3;

rc=20;

[s,11]=fccmke(nc);

n=1il;

for 1 = 1:n

for j=1:n
for k=-c:c
for l=-c:c
for m=-c:c
xij = k + s(j,1)-s(i,1);
yij = 1 + s(j,2)-s(1,2);
zij =m+ s(j,3)-s(1,3);
dist = a*sqrt(xij~2+yij~2+zij"2);
if dist>0 & dist<=rc
phi=4*(1/dist~(12)-1/dist"6);
else
phi=0;
end
ucell = ucell + phi;
end
end
end
end

end

ucell = ucell/2;

ucell = ucell/n;
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In class assignment 5

Calculate the cohesive energy of a crystal of NaCl. The cohesive energy is made
by the sum of a pair potential (use Lennard-Jones here) and of a Coulomb
potential. The contribution of the charge outside of the cut-off to the Coulomb
potential should be included:

J#i ’ij ’C J#i

1<, 1 ) S
Cm/l_I\Z[ quj ql%] Qi:zq/‘

TABLE 1: Parameters of the Lennard-Jones Interactions

atom O (,&) € (kJ/mol)
Na 3.33 0.012
Cl 4.42 0.493
Na—Cl 3.84 0.076
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