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Presentation topics
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Possible topics for the presentations

Modeling of:
• Biomaterials
• Composite materials
• Self-healing materials
• Graphene
• Carbon nanotubes
• Metamaterials
• Polymers
• Your choice

• Journals: Modeling in Materials Science and Engineering, 
Computational Material Science, Journal of the Mechanics and 
Physics of Solids, Acta Materialia, Mechanics of Materials. 

The first presentations will be on March 27.
15 minutes each



Last time
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• There are different simulation techniques to address 
different length scales 

• The smaller the scale the more accurate the description of 
the material, but the more computationally expensive the 
simulation

• In this course we will tackle the nano, the micro and the 
macro-scale. 

• Diffusion can be modeled as the random walk of 
vacancies

 



Today

• Averaging and Binning 

• Modeling atomic crystals

• Sums of interacting pairs of objects

• The simplest interatomic potential: Lennard-Jones

Learning objectives:

• Modeling a crystal and its cohesive energy by using the Lennard-Jones 
potential
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Averaging
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Important point: 
Very often when modeling materials it
is essential to average over various 
simulations.

The behavior of a single particle, 
vacancy, atom, dislocation…is unlikely
representative of the behavior of the 
entire system

The smaller is the system one considers the more important is 
averaging. This is true also in experiments.



The end-to-end probability distribution

We  have generated many equivalent trajectories.

After n jumps where is most likely the vacancy?

Random walk in one dimension starting from zero, reaches a certain 
position xn

If we average over enough trajectories we will end up with the 
probability of finding the atoms at a given position xn.

How can I tell if the trajectories I am taking are `enough’?
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Probability of xn for a random walk

What is the probability that a walker is at xn? For a random walk it is a 
gaussian distribution:

n=100
a=1

Q1: What is the 
probability of a 
straight walk?

Q2: do you notice 
something 
odd/unphysical?
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n=number of jumps
a=step size 



End-to-end probability distribution

The probability distribution in 3D takes the form:

Changing x,y,z to polar coordinates and integrating over the angles 
leads to the end-to-end probability distribution of Rn, a measure of 
how far the atom has diffused in n steps (without info on the 
orientation)
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End-to-end probability distribution
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Binning 
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To create the discrete representation of 
m runs= m trajectories

 



Exercise
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After running the code with the moving vacancy 10 times, you 
find the following end-to-end distances:
Values of Rn= 2, 4, 5, 3, 9, 7, 5, 3, 6, 10 

Calculate by hand the probability distribution of these distances, 
using the binning procedure.

 



Solution 
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Values of Rn= 2, 4, 5, 3, 9, 7, 5, 3, 6, 10 
m runs= m trajectories à   m = 10

 

Δ =
10 − 2
4 = 2



The art of binning 
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Calculated end-to-end probability distribution based on m=2000 trajectories at the 
end of a random walk for n=1000 jumps on a square lattice. 

 
nbin=10

 

nbin=20

 

nbin=80

 

nbin=40

 



Experimental observation at different scales
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continuum
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Materials and scales
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Summary of scales
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Modelling crystalline solids
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Quartz
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garnet



Crystal structure
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Importance of the lattice
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The advantage of introducing the concept of lattice and thus of 
exploiting symmetry and repetition is to reduce the complexity (the 
amount of information) of the problem

→ we are building a model



A periodic continuum
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The lattice
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Non uniqueness of the lattice description 
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Conventional unit cell
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What to choose?
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What to choose?
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The square cell because it has higher 
symmetry than the others



7 crystal systems
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Bravais lattices
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Atomic positions
The sets of identical objects are arrayed in a periodic structure

basis atoms
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The direct lattice
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BCC and FCC crystals
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BCC: Fe, Cr, Mo, Cs, W 
2 atoms in the unit cell: 
one atom at the origin (0,0,0) + one atom in the center at  (1/2,1/2,1/2)a

FCC: Ag, Au, Cu, Al, Ni
4 atoms in the unit cell:
At (0,0,0), (1/2,1/2,0)a; (1/2,0,1/2)a; (0,1/2,1/2)a



Sums of interacting pairs of objects

Example: we want to compute the cohesive energy of a solid

Sum of the interactions between couples of atoms

Simplest case: 
1. the interaction Φ(r) occurs only between pairs of objects
2. It depends only on the distance r between the pairs 

The vector from i to j between two objects is
 
The distance is

SILLY BUT USEFUL REMARK: An object does not interact with 
itself and interacts only once with the others.
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Sums of interacting pairs of objects

If the interactions are energies, which are scalars

When talking about the energy of a crystal it is customary to 
call the sum U, interatomic potential. The sum for four objects 
is:

How about N objects with N very large? 
Write it in a compact form, in fact you can find two compact 
forms, one of which is computationally less costly 
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Sums of interacting pairs of objects

If the interactions are energies, which are scalars

Let’s call the sum U, interatomic potential. The sum for four 
objects is:

How about N objects with N very large?

Computationally expensive

Computationally efficient

Check that these 
two are the same 
for N=4
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Potential energy per unit cell

Energy per object:
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The cohesive energy

41

The potential energy of a crystal is the sum of the energetic interactions between 
all atoms. At 0K the potential energy is called cohesive energy. The cohesive 
energy is the energy required to assemble a solid from its constituent atoms.
For a system made of N atoms:

where Ei is the energy of an individual atom.

GOAL: develop and use simple analytical potentials that approximate the 
interaction potential between individual atoms.
The details of electrons and nuclear charges are approximated, such that the 
analytical potentials are just an average over the electrons.

NOTE: this is a typical feature of materials modeling: using at one scale averages 
over properties at a lower scale.



Terms in the cohesive energy
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The cohesive energy can be written as a series of terms that depend on the 
individual atoms, pair of atoms, triplets of atom, etc.

external field pair potential three-body interactions



Interaction potentials
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Potentials should reflect the bonding between the atoms.

The simplest type of bonding occurs in
rare-gas solids: helium, neon, argon, 
chromium and xeon (a). The nucleus is 
surrounded by a closed shell of valence 
electrons. Bonding is non-directional. 
Potential depends only on distance.

(b) Ionic solids: also closed shell

(c) Metals: the atoms are ionized, 
valence electrons are distributed, non-
directionally. The electron cloud needs to 
be accounted for.

(d) Covalent crystals with strongly 
directional bonds.



Interaction energy
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The interaction energy between two atoms is defined as:

We know that: 
1) At short distance atoms must repel each other or matter will collapse
2) At some larger distance atoms must attract each other or atoms would not 

form solids and fluids at normal pressure

Repulsion: atoms approach each other, electrons cannot be constrained to occupy 
the same small volume. 

AT SHORT RANGE
Since the density of electrons decreases exponentially with their distance from the 
atom, the short-range interactions can be modeled as:



Interactions at long-range
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Long range means that the distance is large compared to the size of the electronic 
distribution.
An attractive term arises from the fluctuations of the electronic cloud. It is called
Van der Waals energy or dispersion energy.

Electrons in an atom fluctuate around their nucleus destroying the spherical 
symmetry. The fluctuation creates an instantaneous dipole moment on the atoms. 
Fluctuations are small, the restoring force can be modeled as a spring

Spring energy:E= ½ kδr2

k=N2/α

Number of valence electrons

polarizability

Interaction between fluctuating dipoles leads to a change in the frequency of 
the fluctuations and therefore to the interatomic potential. For interacting, 
closed-shell, non-ionic systems:  



The Lennard-Jones potential
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It was developed to model closed-shell atoms, interactions only dependent on 
distance

Goal: create a potential to describe the interaction energy Φ(r) between two 
spherical atoms distant r  which in fact can be valid for many materials

Sir John Lennard-Jones 1894-1954



The Lennard-Jones potential
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While developed to model closed-shell atoms it has been used to model almost 
anything….

Goal: create a potential to describe the interaction energy Φ(r) between two 
spherical atoms distant r (input) which can be valid for many materials

The potential is rewritten as:

absolute value of the minimumσ, ε are material constants!

ε

σ



Reduced units
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For calculations, handy to use scaled (or reduced) units:



Take home messages
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• Often simulations require averaging over various cases. This is particularly 
true in the case of small scale simulations

• Often simulations require summing over various objects for instance to 
calculate the energy of the system

• The potential energy of a crystal can be described through potentials that aim 
at representing the interaction between atoms

• The simplest interaction potential proposed is the Lennard-Jones pair-potential



In class assignment 1
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Create a 3D lattice of atoms in an FCC crystal structure.
Use reduced units (fractions of 1).  



FCC and BCC repeating unit
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Create a 3D lattice of atoms in an FCC and in a BCC crystal structure.

Steps:
 
1) start with a single repeating unit: your unit cell
2) add more cells in all directions such as to create a larger crystal with cubic 

shape
3) For visualization of the atoms you can use the command scatter3



FCC repeating unit
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Call the file fccmke.m and write the following 
function:

function [i1,s] = fccmke (nc)

INPUT: nc= nr. of FCC cells in each direction
OUTPUT: i1=total nr of atoms in the cell
   s=(i1, coordinates)



FCC repeating unit
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fccmke.m
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First assignment (evaluated)
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Diffusion of carbon in a homogeneous metal solid occurs as a fully random walk. 
The solid is made of pure FCC iron and carbon moves as an interstitial. 
Plot the probability distribution of the end-to-end distance after 500 steps.    

Simulate than the effect of a large heat source positioned at one end of the crystal.
How does the diffusion process change?

Compare the probability distribution of the end-to-end walk of the carbon atom in 
the solid at constant temperature with the solid subject to a thermal gradient.



Interstitial sites in FCC

56

OCTAHEDRIC
SITE

TETRAHEDRIC
SITE

𝑎 2
2



Voids in FCC cells
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Suggestions for binning
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1) Divide the interval between max and min value of end-to-end distance in nbin

2) Calculate how many values of ree fall in each of the intervals

3) Careful to not ‘loose’ any of the values at the extremes

4) Plot the number of entries per bin divided by the number of total trials

5) Compare with the theoretical curve

6) Search for a reasonable nbin to approach the theoretical curve 


