Computational Material Science
Lecture 2




Presentation topics

Possible topics for the presentations

Modeling of:

Biomaterials
Composite materials
Self-healing materials
Graphene

Carbon nanotubes
Metamaterials
Polymers

Your choice

Journals: Modeling in Materials Science and Engineering,
Computational Material Science, Journal of the Mechanics and
Physics of Solids, Acta Materialia, Mechanics of Materials.

The first presentations will be on March 27.
15 minutes each



Last time

There are different simulation techniques to address
different length scales

The smaller the scale the more accurate the description of
the material, but the more computationally expensive the
simulation

In this course we will tackle the nano, the micro and the
macro-scale.

Diffusion can be modeled as the random walk of
vacancies



e Averaging and Binning

e Modeling atomic crystals
e Sums of interacting pairs of objects

e The simplest interatomic potential: Lennard-Jones

Learning objectives:

e Modeling a crystal and its cohesive energy by using the Lennard-Jones
potential



Averaging

Important point:

Very often when modeling materials it
is essential to average over various
simulations.

The behavior of a single particle,
vacancy, atom, dislocation...is unlikely
representative of the behavior of the

entire system Trajectories

The smaller is the system one considers the more important is
averaging. This is true also in experiments.



The end-to-end probability distribution

We have generated many equivalent trajectories.
After n jumps where is most likely the vacancy?

Random walk in one dimension starting from zero, reaches a certain
position x,

If we average over enough trajectories we will end up with the
probability of finding the atoms at a given position x,,.

How can | tell if the trajectories | am taking are "enough’?



Probability of x, for a random walk

What is the probability that a walker is at x,? For a random walk it is a
gaussian distribution:

[(x,) = (

Q1: What is the
probability of a
straight walk?

Q2: do you notice
something
odd/unphysical?
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End-to-end probabillity distribution

The probability distribution in 3D takes the form:

P(Rn) — ](-\‘n )[(,\'n )](:n)

P(R,,) gives the probability that the vector R, is at a position (x,., v,, Z,).

Changing x,y,z to polar coordinates and integrating over the angles
leads to the end-to-end probability distribution of Rn, a measure of
how far the atom has diffused in n steps (without info on the
orientation)
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To create the discrete representation of P(R,)
m runs= m trajectories
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Exercise

After running the code with the moving vacancy 10 times, you
find the following end-to-end distances:
Valuesof Rn=2,4,5,3, 9,7, 5, 3,6, 10

Calculate by hand the probability distribution of these distances,
using the binning procedure.
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Valuesof Rn=2,4,5,3, 9,7, 5, 3,6, 10
m runs= m trajectories > m =10
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Calculated end-to-end probability distribution based on m=2000 trajectories at the

end of a random walk for n=1000 jumps on a square lattice.
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Materials and scales
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structure

process

. » surface features

. * grain size
. + 1 core size
. » Frank-Read L source
. + 1 pattems
——= point defects
. * voids
> + inclusions
. * cracks
} t t t t t t t >
109 106 102  [m]
A
+—e atomic vibration
*— wave propagation
+«—— surface events
o+—— golidification
«—— GB motion
e—e | vibration
e———= 1 motion
+——= point-defect motion
. > fatigue, creep

L L L 1 L : : ’

10" 10" 10° 10% 102 1 103 [s]

Structural features:
* range in size from 10"'%to 103 m
* interact atomistically at short

distances and over long distances
via long-range elastic stress

fields.

Materials processes:
* occur over time scales ranging
from 10°'5 to years.

* this broad range can sometimes
be an asset when scale
separation occurs.

Modeling material behavior

requires methods able to span

across length and time scales.
17



Modelling crystalline solids

» Most engineering materials are crystalline: the atoms arrange themselves into a
translationally invariant pattern of repeating unit cells. For example:

copper silicon zirconium

Source:Wikimedia Commons

©

©

face-centered cubic (fcc) diamond cubic (dc) hexagonal close packed (hcp)



Quartz

quartz
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Crystal structure

» Many engineering materials have a crystalline structure.

» An ideal crystal is defined by:

lattice: an infinite arrangement of
points in a regular pattern

basis: a group of atoms positioned
at each lattice site




Importance of the lattice

The advantage of introducing the concept of lattice and thus of
exploiting symmetry and repetition is to reduce the complexity (the
amount of information) of the problem

— we are building a model
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A periodic continuum

r-l;r,i‘-‘q-ﬂ
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» A lattice is described in terms of a set of primitive lattice vectors
(or Bravais vectors):

primitive cell (generates lattice when
repeated through space)

LN OA2 E -------- xR
- o....

Alo o}

e
.
.
.
.

primitive lattice vectors

lattice site

Any lattice site can be written as a combination of the primitive lattice vectors:

RY = Ze G;A; (0; € Z)
T— Position of lattice site £ = ({1, (5, (3)

e.g.in the above 2D lattice, the indicated lattice site is located at £ = (2, —1)



Non uniqueness of the lattice description

» The primitive lattice vectors defining a lattice are not unique:

o o o o o o) o o) o) o) o)
o o o o o) o o o)
O A Q-----n-- o
AQ ,P ©
o L)s ) o o
A 1

* Normal practice is to select the shortest and most orthogonal set of vectors.
(“Lattice reduction” — see Arndt et al., J. Comp. Phys., 228, 4858-4880, 2009)

" The term primitive refers to the fact that the volume of the cell ) is the
smallest possible one (i.e. contains no internal lattice points):

QO = |A1 . AQ X A3|



b It is often convenient to work with nonprimitive lattice vectors that more clearly reflect
the symmetries of the lattice:

This unit cell clearly shows that the
lattice is symmetric with respect to
180° rotation about a lattice point.

» Clearly o > Qo

In this case, there are 4%/, + 2 = 3 lattice sites per unit cell,so 2y = 3(20

corners P17 internal

This is called the conventional unit cell with
axes a, b, c , lattice parameters a = |a|,b = |b|,c = ||
and angles o, 3, 7. a
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The square cell because it has higher
symmetry than the others

) . D.oupl); Ngrg,:prjmitige é'el! ) .

. ’ . ’ o Primitive Cell

(wghich is conventi n.all_‘y not amsen)
o ‘ e
o] ] S i o]
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» The symmetry operations place restrictions on lattices which divides them into 7

distinct crystal systems:

impossible

monoclinic
and
orthorhombic

hexagonal

trigonal
and cubic

impossible

impossible




Cubico afacce

Awxial

4"
JB
L7

corpo centrato (1)

Ortorombico a
corpo centrato (1)

Ortorombico a
facce centrate (C)

Ortorombico a Romboedrico (R)

basi centrate (C)

i

Monoclino a basi

Crystal Systent Relationships Tnteraxial Angles Uintt Cell Geomelry:
Cubic a=b=rc

Hexagonal a=bze a=g=90°y=120°

Tetragonal a=bze

Rhombobedral a=b=c

Orthorhombic azbze

Monoclhinie azbze

Triclinic azbse




The sets of identical objects are arrayed in a periodic structure
i oy O/ O
basis atoms @/ O /O / / OO /OO /OO /
o/ O/ O
/%/c°/%/ 0°/0°/o°
wf O/ O/ O
O O /0

R = nja; + nyay 4+ n3az where ny, n,, and n3 are integers that span from —o0 to 00

The position of the Jth basis atom in a cell defined by the lattice vector R,

(relative to the origin) is Ry +r;

The vector connecting the ith basis atom in the central cell (R = 0)

with the jth atom in a cell located at Ry is

R1+l'j—l'i

34



It is often convenient to write the position of the basis atoms

as fractions of the unit cell lattice vectors,

ri = sj1a; + sppa + s;3as

We can thus write the position of an atom (¢) within the cell as

Si = (sil’ Si2, Si3)

R = nja; + nray + n3a;

R+4+r;—ri = +5sj1 —sia; + (ny +5j20 — sip)ay + (n3 + 553 — 5;3)a3
X = xja; + x2ay + x3a3 X =vX-X=[X|
X2 = x12a2 + x%b2 + xs?c2 + 2x1x2ab cos y + 2x1x3ac cos B + 2xx3bc cos a

which for cubic systems is X* = a”(x] + x3 + x3)
35



BCC: Fe, Cr, Mo, Cs, W
2 atoms in the unit cell:
one atom at the origin (0,0,0) + one atom in the center at (1/2,1/2,1/2)a

FCC: Ag, Au, Cu, Al, N1
4 atoms in the unit cell:
At (0,0,0), (1/2,1/2,0)a; (1/2,0,1/2)a; (0,1/2,1/2)a

36



Sums of interacting pairs of objects

Example: we want to compute the cohesive energy of a solid
Sum of the interactions between couples of atoms

Simplest case:
1. the interaction ®(r) occurs only between pairs of objects
2. It depends only on the distance r between the pairs

The vector from i to j between two objects is
Fij=1Tj—I
The distance is
rij = (i - 1)

SILLY BUT USEFUL REMARK: An object does not interact with
itself and interacts only once with the others.



Sums of interacting pairs of objects

If the interactions are energies, which are scalars ¢;; = ¢;;

When talking about the energy of a crystal it is customary to
call the sum U, interatomic potential. The sum for four objects

IS.
U=¢(rin) + ¢(ri3) + ¢(ria) + ¢(r3) + ¢(roa) + ¢(raa)

How about N objects with N very large?
Write it in a compact form, in fact you can find two compact
forms, one of which is computationally less costly

38



Sums of interacting pairs of objects

If the interactions are energies, which are scalars ¢;; = ¢;;

Let’s call the sum U, interatomic potential. The sum for four
objects is:

U= ¢(r12) + ¢(ri3) + ¢(r1a) + ¢(r3) + ¢(roa) + ¢(r3a)

How about N objects with N very large?

Computationally expensive U = % Z Z P(ri;)

i=1 ji

Check that these
two are the same
N for N=4
Computationally efficient U =

i

I

_|_

d(rij)

1

1 j=i

39



/6%/6°/c°/ U=33 3 601
YAy

Ri+rz2-r1 n n
|
Y5/°/ e =453 Y R by )

The " indicates that i = j terms for R = (0, 0, 0) (the central unit cell) are not included.

Ucen is the energy per unit cell.

_ |
Energy per object: u = U, = — Ul
n
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The cohesive energy

The potential energy of a crystal is the sum of the energetic interactions between
all atoms. At OK the potential energy is called cohesive energy. The cohesive
energy is the energy required to assemble a solid from its constituent atoms.

For a system made of N atoms:
N

U = E(all atoms) — Z E;
j=1

where E;1s the energy of an individual atom.

GOAL: develop and use simple analytical potentials that approximate the
interaction potential between individual atoms.

The details of electrons and nuclear charges are approximated, such that the
analytical potentials are just an average over the electrons.

NOTE: this 1s a typical feature of materials modeling: using at one scale averages
over properties at a lower scale.

41



The cohesive energy can be written as a series of terms that depend on the
individual atoms, pair of atoms, triplets of atom, etc.

=

N

1
U= Zvl(rl)-l- ZZ ¢,j(l',,l'_,)+g ) ’U3(l°i,l'j,l'k)+--'

i=1 j=I J/ i=1 j=1 k=1 J/

external field pair potential three-body interactions

OJO,
0O,

N
N/
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Interaction potentials

Potentials should reflect the bonding between the atom:s.

The simplest type of bonding occurs in

rare-gas solids: helium, neon, argon, @‘
chromium and xeon (a). The nucleus is ° ° Z \
surrounded by a closed shell of valence
electrons. Bonding is non-directional. ° ° V@
Potential depends only on distance.

(a) (b)

(b) Ionic solids: also closed shell

(c) Metals: the atoms are ionized,
valence electrons are distributed, non-

directionally. The electron cloud needs to

be accounted for. @ @
(c)

(d) Covalent crystals with strongly
directional bonds.

43



Interaction energy

The interaction energy between two atoms is defined as:

¢ij(ri,v;) = E(i + j) — E(i) — E(j).

We know that:

1) At short distance atoms must repel each other or matter will collapse

2) At some larger distance atoms must attract each other or atoms would not
form solids and fluids at normal pressure

Repulsion: atoms approach each other, electrons cannot be constrained to occupy
the same small volume.

AT SHORT RANGE
Since the density of electrons decreases exponentially with their distance from the
atom, the short-range interactions can be modeled as:

Gsp(r) = Ae™™

44



Interactions at long-range

Long range means that the distance is large compared to the size of the electronic
distribution.

An attractive term arises from the fluctuations of the electronic cloud. It is called
Van der Waals energy or dispersion energy.

Electrons in an atom fluctuate around their nucleus destroying the spherical

symmetry. The fluctuation creates an instantaneous dipole moment on the atoms.
Fluctuations are small, the restoring force can be modeled as a spring

Spring energy:E= Y5 kor?

k=N?/0. —> polarizability

Number of valence electrons

Interaction between fluctuating dipoles leads to a change in the frequency of
the fluctuations and therefore to the interatomic potential. For interacting,
closed-shell, non-ionic systems:

¢l‘(1'u.’ (r)= _I'_6 45




The Lennard-Jones potential

It was developed to model closed-shell atoms, interactions only dependent on
distance

Goal: create a potential to describe the interaction energy @(r) between two
spherical atoms distant » which in fact can be valid for many materials

* Jones,).E., Proc. Roy. Soc. A, 106,441-462 (1924)
* Jones, ). E., Proc. Roy. Soc. A, 106,443-477 (1924)

Sir John Lennard-Jones 1894-1954 46



The Lennard-Jones potential

While developed to model closed-shell atoms it has been used to model almost
anything....

Goal: create a potential to describe the interaction energy @(r) between two
spherical atoms distant » (input) which can be valid for many materials

100 B A
: - P(r) = — — —
+ Repulsive +A/r2 . rl2 6
Co | ¢ o
50 F |
The potential 1s rewritten as:
.
0 (3
o\ 12 o\ 6
o(r)=4e| | — — | —
r r
50 |
' — 1/6 _
it | . Attractive —B/r0 o = (B/A) $(0) =0
3.0 4.0 5.0 6.0 7.0 8.0 A
r/A e = A°/4AB

: | absolute value of the minimum
o, € are material constants! 47



For calculations, handy to use scaled (or reduced) units: ¢* = ¢ /€ and r* =r/o

=2 ()

—1

REPULSION *_I_’ ATTRACTION
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Take home messages

Often simulations require averaging over various cases. This is particularly
true in the case of small scale simulations

Often simulations require summing over various objects for instance to
calculate the energy of the system

The potential energy of a crystal can be described through potentials that aim
at representing the interaction between atoms

The simplest interaction potential proposed is the Lennard-Jones pair-potential

49



Create a 3D lattice of atoms in an FCC crystal structure.
Use reduced units (fractions of 1).

50



FCC and BCC repeating unit

Create a 3D lattice of atoms in an FCC and in a BCC crystal structure.

Steps:

1) start with a single repeating unit: your unit cell

2) add more cells in all directions such as to create a larger crystal with cubic
shape

3) For visualization of the atoms you can use the command scatter3

51



Call the file fccmke.m and write the following
function:

function [11,s] = fccmke (nc)
INPUT: nc= nr. of FCC cells in each direction

OUTPUT: 11=total nr of atoms in the cell
s=(11, coordinates)

52
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function[s,i1]= fccmke(nc)

n=4; % number of atoms in a unit cell
%snc=2; % cells in each-direction, if fccmke is run independently of latsum
na=n*nc”3; %number of atoms in the simulation
r=[0 0 0;.5 .5 0;0 .5 .5;.5 0 .5]

11=0; % initialize the total number of atoms
s=zeros(n*nc”3,3); % s(atoms, coordinates)

for k=1l:nc
for 1 = 1:nc
for m = 1:nc
for 1 = 1:4
11=11+1;
s(il,1) = (r(i,1) + k-1)/nc;
s(1i1,2) = (r(i,2) + 1-1)/nc;
s(il,3) = (r(i,3) + m-1)/nc;
end
end
end
end
scatter3(s(l:na,l1),s(1l:na,2),s(1l:na,3), 'filled"'); % visualize all
cell

atoms in the unit
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First assignment (evaluated)

Diffusion of carbon in a homogeneous metal solid occurs as a fully random walk.
The solid is made of pure FCC iron and carbon moves as an interstitial.
Plot the probability distribution of the end-to-end distance after 500 steps.

Simulate than the effect of a large heat source positioned at one end of the crystal.
How does the diffusion process change?

Compare the probability distribution of the end-to-end walk of the carbon atom in
the solid at constant temperature with the solid subject to a thermal gradient.
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Once we know the position of a void then we can use the symmetry operations of the crystal to locate the other

voids. This includes lattice translations

Site for octahedral void

’—/ - ~\ —————

_______ E——— ‘______

Face centerlng translation

»Equivalent site for an octahedral void
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)
2)
3)
4)
5)

6)

Suggestions for binning

Divide the interval between max and min value of end-to-end distance in nbin
Calculate how many values of ree fall in each of the intervals

Careful to not ‘loose’ any of the values at the extremes

Plot the number of entries per bin divided by the number of total trials
Compare with the theoretical curve

Search for a reasonable nbin to approach the theoretical curve
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