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Last time

• The FEM is a technique to solve partial differential equations with 
prescribed boundary conditions

• It is used in solid mechanics to calculate the deformation of bodies subject 
to loading. 

• The body is discretized using a mesh made of finite elements and nodes

• The displacements at the nodes inside the body are the unknown of the 
problem and obtained as a solution

• The fields between nodes, i.e. inside the elements, are approximated 
using shape functions, which can be linear, bi-linear, etc.

• The element in the original mesh is mapped to a standard element called 
isoparametric element, which has simple geometry.
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Today

• Solution of a system of discrete springs: equilibrium vs FEM solution
• Minimization of the strain energy
• Stiffness of the element
• Assembly of the stiffness matrix
• Solution
• Numerical integration

Coding: generation of a finite element mesh for a rectangular cantilever.
Change boundary conditions to the cantilever code: from bending to tension

Learning goals: 

Capability to list the main steps involved in the FEM
The student can create a finite element mesh, storing coordinates of nodes, 
and their connectivity. Can find and modify the boundary condition of a code.
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Discrete system: the spring

Assumption: the force is positive if the spring is elongated

Displacements are discrete: they exist only at the end of the
spring, while for the bar we have u(x).

Constitutive equation
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Discrete element: the spring

Internal force:
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Discrete system: springs in series
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Let’s solve for u 
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Solution by FEM

Connectivity table:

How many unknowns in our problem? 
As many as the total number of degrees of freedom 
Total d.o.f.=nnodes*nodal d.o.f. 

local connectivity

global connectivity
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Degrees of freedom

local d.o.f

global d.o.f
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The stiffness matrix K

elemental 
stiffness 
matrix

global 
stiffness 
matrix

A is the 
assembly 
operator

The assembly procedure takes care of placing the local stiffness 
matrixes in the correct location of the global stiffness matrix 
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Assembly

Let’s first rewrite the 
elemental stiffness 

matrix for element 1 
as:

We need to place 
the local matrix in 

the global matrix at 
the correct global 

dof 

With an abuse of 
notation: K(1)11=K(1) (1,1)
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Assembly

Contribution of first 
element

Contribution of 
second element
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Assembled matrix

Properties of K:
• symmetric
• singular (det=0, thus non invertible)
• sparse (believe me, or try 10 elements)
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Solution: approach 1
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Solution: approach 2
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Solution 1 and 2
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Back to our discretized 2D body

• A finite element mesh is defined as a set of elements and nodes.
• In the example below the elements are 3 noded triangles
• The nodes are numbered 1,2,3…N, while the elements are numbered 

(1),(2)…(L).  Element numbers are shown in parentheses.
• The position of the ath node is specified by its coordinates x,y   
• During deformation the nodes move. Their displacement (u1,u2) is 

unknown at the beginning of the simulation and calculated during the 
simulation      

• The element connectivity specifies the node numbers attached to each 
element.  The connectivity for element 1 is (10,9,2); for element 2 it is 
(10,2,1) 

e1

e2

1 2
3

4

56
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(7)

(8)

(9)

(10)

(11)
(12)
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For a triangular element

 
 Linear interpolation for triangular element

.

e1

e2

(a) (b)

(c)

These shape functions vary linearly with position within the element.
Each shape function has a value of one at one of the nodes, and is zero at 
the other two.
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The displacement vector

  

 The unknown displacement components will be determined by 
minimizing the potential energy of the solid.
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Strain in the element

.

e1

e2

(a) (b)

(c)
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Strain in the element

We can now compute the strain distribution within the element.
It is convenient to express the results in matrix form, as follows:

.

For linear triangular elements, the matrix of shape function 
derivatives  B   is constant.  It depends only on the coordinates of 

the corners of the element, and does not vary with position within 
the element.  

Note that this is not the case for most elements.



22

Strain energy

The strain energy density is defined as 

.

Now, express these results in terms of the nodal displacements for the element 

We can now compute the total strain energy stored within the element.  Because  B  is 
constant, we just need to multiply the strain energy density by the area of the 

element:
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The global stiffness matrix

.

Hence, the total strain energy of the element is

e1

e2
1 2

3 4

1

2The total strain energy of the solid may be computed by adding together 
the strain energy of each element:

stiffness matrix of 
the element
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The global stiffness matrix

It is more convenient to express W in terms of the total displacement vector. For example, 
the strain energy for the simple 2 element mesh shown is:

e1

e2
1 2

3 4

1

2 element

node
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The global stiffness matrix
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Boundary loading

e1

e2

1 2
3

4

5
6

7

8 910
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t

e1

e2
(a) (b)

(c)
t

s
L

We now need to compute the boundary term in the potential energy.
As an example, we compute the contribution to the potential energy due to 
the traction acting on the face of one element.

Note that the traction vector t (force per unit area) that acts on the face 
of one element is assumed to be constant. 

For the element shown, the contribution to the potential energy would be
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Boundary loading

Displacement vary linearly

e1

e2
(a) (b)

(c)
t

s
L
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Minimizing potential energy

e1

e2
(a) (b)

(c)
t

s
L

An important feature of the FEM equations is that the stiffness matrix is sparse (only a small number of 
entries in the matrix are non-zero).  Consequently, special schemes are used to store and factor the 

equations, which avoid having to store large numbers of zeros.  
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Output

The finite element method always calculates the displacement of each node 
in the mesh. These are the unknown variables in the computation.  
A number of quantities can be computed from the displacement fields, 
including:

1.  Velocity and acceleration fields
2.  Strain components, principal strains, and strain invariants, or their rates
3.  Elastic and plastic strains or strain rates
4.  Stress components; principal stresses; stress invariants
5.  Forces applied to nodes or boundaries
6.  Contact pressures
7.  Material failure criteria

All these quantities can be computed as functions of time at selected points in 
the mesh (either at nodes, or at element integration points); as functions of 
position or as contour plots.
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Solutions

Once displacements and therefore the strains are known, the stress-
strain relations for the element are used to compute the stresses.

In principle, this procedure could be used to determine the stress at any 
point within an element.  However, it turns out to work better at some 
points than others.  The special points within an element where stresses 
are computed most accurately are known as integration 
points.  (Stresses are sampled at these points in the finite element 
program to evaluate certain volume and area integrals, hence they are 
known as integration points).

3 noded
triangle

6 noded
triangle

4 noded
quadrilateral

8 noded
quadrilateral
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Let’s generalize

.

The case just presented is very specific: strain is constant in the element and the 
element is interpolated with linear shape functions, this is why it is possible to 
calculate strain energy without making use of integrals.

In general calculating elemental strain energy involves integrating the strain 
over the volume of the element. This is done by numerical integration using 
Gaussian quadrature.
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Numerical Integration

.
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Gauss quadrature

.
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Gauss quadrature

.
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Gauss quadrature

.
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Gaussian quadrature 1D

.
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Change of interval

.

Remember the isoparametric element?  
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Gaussian quadrature 2D

.
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Isoparametric square element
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The strain matrix B



Take home messages

• FEM is based on the discretization of the continuum body under analysis

• The unknowns are the nodal displacements, the number of unknowns 
equals the number of d.o.f., i.e. nr. of dimensions*nodes

• The displacements are found by minimizing the strain energy of the 
system

• In general the strain is not constant in the element, therefore integration of 
the strain over the element is required

• The numerical integration is performed using Gaussian quadrature

• Gaussian quadrature is used to integrate functions between -1 and 1. This 
motivates the use of isoparametric elements in natural coordinates 
spanning from [-1,1].
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Deflection of a beam

.

δ = FL3 ∕ 3EI 

I = bh3 ∕ 12 

Compare against analytical solution

 



datafile.m
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datafile.m
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.

F



Mesh generation
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Calculate nodal coordinates, nodal connectivities, and identify nodes where 
boundary conditions are prescribed. 



Tip on mesh generation
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Start by dividing length and width in equi-spaced segments



Tip on mesh generation
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Start by dividing length and width in equi-spaced segments



Nodal number and coordinates
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Nodal connectivity 
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Mesh generation
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Let’s see the mesh
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You received a FEM code to model the elastic response of a cantilever under bending.
The code is made of various files. Start from FEM.f and see what it does, and which 
functions it calls. Try to understand the main parts of the code.

Then add at the end of FEM.f a command to display the error for the maximum 
displacement of the cantilever. 

Check how the error changes with mesh refinement. 
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Exercise FEM 1

δ = FL3 ∕ 3EI 

I = bh3 ∕ 12 
B=W
h=D



Modify the code such that it models a cantilever under tensile loading.

Check that you modified the model correctly by looking at the deformed mesh and at the 
stresses. Is sigma_xx homogeneous? What about sigm_yy? How does the Poisson ratio 
affect sigma_yy? 

Modify the boundary conditions such that the stress in yy direction is also homogeneous. 
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Exercise FEM 2



Modify the code such that it uses plane strain instead of plane stress conditions.

For which conditions is the cantilever stiffer?
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Exercise FEM 3


