Computational Material Science
Lecture 10




The FEM is a technique to solve partial differential equations with
prescribed boundary conditions

It is used in solid mechanics to calculate the deformation of bodies subject
to loading.

The body is discretized using a mesh made of finite elements and nodes

The displacements at the nodes inside the body are the unknown of the
problem and obtained as a solution

The fields between nodes, i.e. inside the elements, are approximated
using shape functions, which can be linear, bi-linear, etc.

The element in the original mesh is mapped to a standard element called
isoparametric element, which has simple geometry.



Solution of a system of discrete springs: equilibrium vs FEM solution
Minimization of the strain energy

Stiffness of the element

Assembly of the stiffness matrix

Solution

Numerical integration

Coding: generation of a finite element mesh for a rectangular cantilever.
Change boundary conditions to the cantilever code: from bending to tension

Learning goals:
Capability to list the main steps involved in the FEM

The student can create a finite element mesh, storing coordinates of nodes,
and their connectivity. Can find and modify the boundary condition of a code.



Assumption: the force is positive if the spring is elongated
B = K3§ b= Uy -u,

Constitutive equation

Displacements are discrete: they exist only at the end of the
spring, while for the bar we have u(x).
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How many unknowns in our problem?
As many as the total number of degrees of freedom
Total d.o.f.=nnodes*nodal d.o.f.
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elemental 7= 3 B — 1 -
stiffness 15@'_); | K?) L | ’]

matrix

global - heg Ais the
stiffness K= A k ®) assembly
matrix ™ €=1 = operator

The assembly procedure takes care of placing the local stiffness
matrixes in the correct location of the global stiffness matrix
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Let’s first rewrite the ) . )|l -
elemental stiffness *___< = Kg 17 11
matrix for element 1
as:
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* symmetric
» singular (det=0, thus non invertible)
» sparse (believe me, or try 10 elements)
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A finite element mesh is defined as a set of elements and nodes.

In the example below the elements are 3 noded triangles

The nodes are numbered 1,2,3...N, while the elements are numbered
(1),(2)...(L). Element numbers are shown in parentheses.

The position of the ath node is specified by its coordinates x,y

During deformation the nodes move. Their displacement (u1,u2) is
unknown at the beginning of the simulation and calculated during the
simulation

The element connectivity specifies the node numbers attached to each

element. The connectivity for element 1 is (10,9,2); for element 2 it is
(10,2,1)
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Linear interpolation for triangular element

)5 A7)
N, (3,%,) = (P30 ) (o 2P| )

vy xgc) xl(a) _ xl("’) —1x —xl(c) (xéa) B xg))
Ny (3, %) = (x(g)) NGO )) (( NON xfc))) B (( & xl(“))(xg") xf))

(x2 e ) ( NOJNC ) B (x1 5@ (x(b) _ xga))
N.(x,x%)= (x( ) xga))(xl(b) _xl(a))_ (xl(C) _xl(a))(icgb) _xga))

These shape functions vary linearly with position within the element.
Each shape function has a value of one at one of the nodes, and is zero at
the other two.

#,(q,%)= uz(a)Na (q,x)+ uz(b)Nb (3, %) + uz-(c)NC (xq,%,)
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The unknown displacement components will be determined by
minimizing the potential energy of the solid.
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#,(xq,%)= ul(a)Na (q,2) + uz(b)Nb (3, %) + ul-(C)NC (xq,%;)
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We can now compute the strain distribution within the element.
It is convenient to express the results in matrix form, as follows:

_ T’

aN, Ny W |
axl ax]_ axl 2

a1 (®)
§=[B]gelement = | ey |=| © oN, % 0 aN, ||

’e ax, ax, ax, uéb)

20 lanv, av, aN, aN, oN, aN, e

i ax2 axl axz 6x1 6&:2 6x1 1 (C)
u

72

For linear triangular elements, the matrix of shape function
derivatives B is constant. It depends only on the coordinates of
the corners of the element, and does not vary with position within
the element.
Note that this is not the case for most elements.
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The strain energy density is defined as

Now, express these results in terms of the nodal displacements for the element
Uelement _ l uelementT ([B ]T [D][B ])uelement
52 u

We can now compute the total strain energy stored within the element. Because B is
constant, we just need to multiply the strain energy density by the area of the
element:

A=%‘(x{) —xla)(xQC _xg)—(xlc —xf)(xg —x§)
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Hence, the total strain energy of the element is

ement 1 elemen emen
Wel ‘ =5£‘ : tT(Avelement [B]T [D][B])Eel ‘
N )
Y

stiffness matrix of
the element

The total strain energy of the solid may be computed by adding together
the strain energy of each element:

W — Z Welement _ Z gelement'f Kelement uelement I_l.el 2

elements

=
2

elements
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It is more convenient to express W in terms of the total displacement vector. For example,
the strain energy for the simple 2 element mesh shown is:
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We now need to compute the boundary term in the potential energy.
As an example, we compute the contribution to the potential energy due to
the traction acting on the face of one element.

Note that the traction vector t (force per unit area) that acts on the face
of one element is assumed to be constant.

For the element shown, the contribution to the potential energy would be

L
P= _J.f:'”:'ds
0
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u; = ux.(a) 2 + uz.(c) [1 - %] Displacement vary linearly

pelement __y (@ j ds— 1 [1—%}:’3

= —ff“x(a)£—ff“:(0)§

L L L
=—[f15 hs a7 b 2} [ T “gc)}

Pelement _ _rface _ uface
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An important feature of the FEM equations is that the stiffness matrix is sparse (only a small number of
entries in the matrix are non-zero). Consequently, special schemes are used to store and factor the

equations, which avoid having to store large numbers of zeros.
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The finite element method a/ways calculates the displacement of each node
in the mesh. These are the unknown variables in the computation.

A number of quantities can be computed from the displacement fields,
including:

Velocity and acceleration fields

Strain components, principal strains, and strain invariants, or their rates
Elastic and plastic strains or strain rates

Stress components; principal stresses; stress invariants

Forces applied to nodes or boundaries

Contact pressures

Material failure criteria

NOoOOGhWN =

All these quantities can be computed as functions of time at selected points in

the mesh (either at nodes, or at element integration points); as functions of
position or as contour plots.
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VAW

3 noded 6 noded
triangle triangle

4 «] 14«44«
[33] 31

4 noded 8 noded
quadrilateral quadrilateral

Once displacements and therefore the strains are known, the stress-
strain relations for the element are used to compute the stresses.

In principle, this procedure could be used to determine the stress at any
point within an element. However, it turns out to work better at some
points than others. The special points within an element where stresses
are computed most accurately are known as integration

points. (Stresses are sampled at these points in the finite element
program to evaluate certain volume and area integrals, hence they are
known as integration points).
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The case just presented is very specific: strain is constant in the element and the
element is interpolated with linear shape functions, this is why it is possible to
calculate strain energy without making use of integrals.

In general calculating elemental strain energy involves integrating the strain

over the volume of the element. This is done by numerical integration using
Gaussian quadrature.

- In general, a numerical integration 1s the approximation
of a definite integration by a “weighted” sum of function
values at discretized points within the interval of
integration.

[} redc =3 wrex)

where w. 1s the weighted factor depending on the integration
schemes used, and f'(x,) 1s the function value evaluated at the

given pont x;
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%) Rectangular Rule

3

height=f{x,*)  height=f(x,*)

N\ /

Approximate the integration,

I: f(x)dx | that is the area under

the curve by a series of

rectangles as shown.

The base of each of these

rectangles 1s Ax=(b-a)/n and

its height can be expressed as
x  [(x;*)where x,*1s the

A—a x / x=b midpoint of each rectangle

X=X, A=Y,

[ F @) =f (e Ax+ £, A+ . f (x,%)Ax
— AX[f(xl*)-l-f(xz*) +"f(xn*)]
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1 n
[ f@yde~ 3 wif(a))
1=1

Thecase n=1 wy f(xq) = /_11 f(z)dx

we substitute f(x) = 1land f(xz) =«

1 1
w1 = / llda: wiry = /_1a3da::0
w1, = 2 r1 = 0

The desired formula is

[, f@ydz = 250
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1
The case n = 2. wy f(x1) + wof(xo) ~ /_1 f(z)dx

f(z) = l,x,azz,x?’

This leads to the system

1
wy) + wy = 11d:v=2
1
wix1 + woxn = /lxda:=0

1 2
wlaz% + wgaz% / 22 dr = 3
0

I
T
R

8

w

IS

&8

I

wlaz‘z’ + wga:%

The solution is given by

w1 = w2 =4 xl:sqrti35’ x2:sqrti3;
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This yields the formula

/ f(z)dz ~ f (sqrt(3)) +f (sqrt(3))

We say it has degree of precision equal to 3 since it
integrates exactly all polynomials of degree < 3. We
can verify directly that it does not integrate exactly

f(x) = z*.
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Sampling points and weights for Gaussian quadrature

Order n | Location §; Weight w;
1 0 2
2 + 1
3| £/06.0 P33
4|y ua 1 - W
4 /32412 1y 6;@
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Integrals on other finite intervals [a,b] can be con-

verted to integrals over [—1, 1], as follows:

b—a [l F<b+a+t(b—a)>dt

b
F(x)dx =
/a () da 2 —1 2

based on the change of integration variables

b+ a+tb—a) 1<i<1
- 2 ? — —

xr

Remember the isoparametric element?

 1-D Jotobiqn : mapSs
S|‘r."p$ | q{ wioHk o x

L?"'i{-"/
IR FUTTIE N L0 EIR Rt At

37



..... m‘“ vp"’\na wdb | L] ln} 'W.'ll. |
..... V”r"bt h ; | . | | . . ! | . | Wlt" Mr‘of‘hyb

Unolly my sn o flt iz od fogi oy

-l L[ [ala 0
His f J -r(;'?/) 454"/ :ZZM %‘e(gt;”) 11 11
o IR L '-'_ct'_ (-7 %) (ﬁa.ﬁ)
" 3
g
1 2
¢ 1 .1
(~75 73 (75— )

38



ue -1,1) M (1,1

ug us

usy /H é

= T -1,-1) (1,-1)

uj3

Shape functions: ~ N; = (1 +£&) (1 +nn;)

The displacement fields can be then written as:
u=Nyug + Nous + Naug + Nau7,
v =Nyus + Noug + N3ug + Nayug

Or alternatively in the matrix form as u = N, where
N - Nt 0 Ny, 0 N3 O Ng O
{0 Ny O Ny O N3 0O Ny
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‘ux] [F11 T2 O 0 Jue (U ¢
uy _ |_21 |_22 0 0 un, - R un,
V. 0 0 Tu Tollve ? V¢
| Vy | i 0 0 |_21 F22_ _V,'f)_ | V.
Finally, we have
—U,g- —Nl,g 0 Nz,g 0 N3,§ 0 N4,€ 0 11 “
uy _ Nl,n 0 N2,77 0 N3,77 0 N4,77 0 . "R .
Ve B 0 Nl,g 0 Nz,g 0 N3,£ 0 N4,£ . -3
| V| i 0 Nl’,7 0 N2,"7 0 N3,77 0 N4,,7_ U.8 U.8
€= R1 R2R3ﬁ
B = R1R2R;3

The stiffness matrix is given by K@ = [ B'CB dQ = [, [ B'CBt|J| d&dy

(e) _ 't
load vector '/ = [Ft Nt dl 40



FEM is based on the discretization of the continuum body under analysis

The unknowns are the nodal displacements, the number of unknowns
equals the number of d.o.f., i.e. nr. of dimensions*nodes

The displacements are found by minimizing the strain energy of the
system

In general the strain is not constant in the element, therefore integration of
the strain over the element is required

The numerical integration is performed using Gaussian quadrature

Gaussian quadrature is used to integrate functions between -1 and 1. This
motivates the use of isoparametric elements in natural coordinates
spanning from [-1,1].
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Compare against analytical solution

L

6 = FL3/3El

B

— hh3
Th I=bh*>/12
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% Generate data file for a regular cantilever problem

\O

sInput:

%sL=length of the beam
W=width of the beam
%D=depth of the beam

%I=inertia

%MatProp [E nu]

% corner 1 = [x y] bottom-left corner of the cantilever
% corner 2 = [x y] top-right corner of the cantilever
% nelx = number of elements in the x direction

% nely = number of elements in the y direction
%%%calls meshgencant

% Output:

% nodalcoord nodal coordinates

nodalconn = nodal connectivity in anticlockwise direction
%MatProp [E nu]
%forcenodes, rightnodes forces prescribed
%fixednodes, leftnodes displacements prescribed
%0utput:data.mat
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clc;

clear;

L=30;

D=2;

W=10;

I=W*(D"3)/12;

MatProp=[2.1lell,0.3]

EI=MatProp(l)*I;

P=2; % applied load

corner 1=[0,0];

corner 2=[L,D];

nelx=300;

nely=20;

[nodalcoord nodalconn fixednodes forcenodes]=meshgencant(corner 1,corner 2,nelx,nely);
save -v7 data MatProp nodalcoord nodalconn fixednodes forcenodes L EI W P;
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Calculate nodal coordinates, nodal connectivities, and identify nodes where
boundary conditions are prescribed.

function [nodalcoord nodalconn leftnodes rightnodes]=meshgencant(corner 1,corner 2,v¢
nelx,nely)

% Input:

% corner 1 = [x y] bottom-left corner of the cantilever

% corner 2 = [x y] top-left corner of the cantilever

% nelx = number of elements in x-direction

% nely = number of elements in y-dir

% Output:

% nodalcoord = nodal coordinates in ascending order

% nodalconn = nodal connectivity in anticlockwise direction
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Start by dividing length and width in equi-spaced segments
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Start by dividing length and width in equi-spaced segments

delta x=abs(corner 2(1)-corner 1(1))/nelx;
delta y=abs(corner 2(2)-corner 1(2))/nely;

xstart=min(corner 2(1),corner_1(1));
ystart=min(corner 2(2),corner 1(2));

nodalcoord=zeros((nelx+1)*(nely+1),2);
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nodeno=0;

for elx = 1l:nelx+1
xcoord=xstart+(elx-1)*delta x;
for ely =l:nely+1
ycoord=ystart+(ely-1)*delta vy;
nodeno=nodeno+1;
nodalcoord(nodeno, : )=[xcoord,ycoord];
end
end
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nodalconn=zeros(nelx*nely,4);

for elx = l:nelx
for ely = l:nely
eleno=(elx-1)*nely+ely;
nl=(elx-1)*(nely+1l)+ely;
n2=elx*(nely+1l)+ely;
nodalconn(eleno, :)=[nl n2 n2+1 nl+l];
end
end

leftnodes=(1:nely+1)"';
rightnodes=(nelx*(nely+1)+1: (nelx+1)*(nely+l))";

end
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delta x=abs(corner 2(1l)-corner 1(1))/nelx;
delta y=abs(corner 2(2)-corner _1(2))/nely;

xstart=min(corner 2(1),corner 1(1));
ystart=min(corner 2(2),corner 1(2));

nodalcoord=zeros((nelx+1)*(nely+1),2);
nodeno=0;

for elx = 1l:nelx+1
xcoord=xstart+(elx-1)*delta x;
for ely =l:nely+1
ycoord=ystart+(ely-1)*delta y;
nodeno=nodeno+1;
nodalcoord(nodeno, : )=[xcoord,ycoord];
end
end

nodalconn=zeros(nelx*nely,4);

for elx = 1l:nelx
for ely = l:nely
eleno=(elx-1)*nely+ely;
nl=(elx-1)*(nely+l)+ely;
n2=elx*(nely+1l)+ely;
nodalconn(eleno, :)=[nl n2 n2+1 nl+1l];
end
end

leftnodes=(1:nely+1)"';

rightnodes=(nelx*(nely+1)+1: (nelx+1)*(nely+1))";

end
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clc;
clear;

load data.mat
whos -file data.mat;

nnodes=size(nodalcoord,l);
nele=size(nodalconn,1l);
ndofs=2*nnodes;

h=figure(1l);

set (0, 'CurrentFigure',h); hold on;
for ele=l:nele
elenodes=nodalconn(ele,1:4)
hl=plot(nodalcoord(elenodes([1:4,1]),1),nodalcoord(elenodes([1:4,1]),2),"'-¥
x','linewidth',2, 'color',[1,0,0]);
end
legend([hl], 'original mesh');
axis equal;
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You received a FEM code to model the elastic response of a cantilever under bending.
The code is made of various files. Start from FEM.f and see what it does, and which
functions it calls. Try to understand the main parts of the code.

Then add at the end of FEM.f a command to display the error for the maximum
displacement of the cantilever.

Check how the error changes with mesh refinement.
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Modify the code such that it models a cantilever under tensile loading.

Check that you modified the model correctly by looking at the deformed mesh and at the
stresses. Is sigma_xx homogeneous? What about sigm_yy? How does the Poisson ratio

affect sigma_yy?

Modify the boundary conditions such that the stress in yy direction is also homogeneous.
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Modify the code such that it uses plane strain instead of plane stress conditions.

For which conditions is the cantilever stiffer?
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