CALCOLO NUMERICO

Ing. chimica e dei materiali - A.A. 2023-24

Esercizio: Interpolazione polinomiale, Approssimazione ai minimi quadrati

Siano dati i seguenti punti di appoggio:

- 1. scrivere la tabella delle differenze divise di Newton e determinare il polinomio di grado 4 che interpola i punti dati
- 2. determinare i coefficienti della retta ai minimi quadrati
- 3. determinare i coefficienti della parabola della forma:

$$p_2(x) = a_0 + a_1 x^2$$

che minimizza gli scarti verticali nel senso dei minimi quadrati

Svolgimento. È presentato lo svolgimento per le tre richieste con commenti/osservazioni aggiuntive

In questo esercizio, l'intervallo dei dati è $I_x = [0.1, 2.5]$.

1. La tabella delle differenze divise di Newton è:

x_i	ordine 0	ordine 1	ordine 2	ordine 3	ordine 4
0.1	11.0702				
		-19.0780			
0.5	3.43895		18.9646		
		-0.113429		-9.26771	
1.1	3.37089		3.20947		5.59568
		4.05888		4.16193	
1.8	6.21211		11.5333		
		20.2055			
2.5	20.3560				

Il polinomio interpolatore diventa quindi:

$$p_4(x) = 11.0702$$

$$-19.0780(x - 0.1)$$

$$+18.9646(x - 0.1)(x - 0.5)$$

$$-9.26771(x - 0.1)(x - 0.5)(x - 1.1)$$

$$+5.59568(x - 0.1)(x - 0.5)(x - 1.1)(x - 1.8)$$

$$= 14.9899 - 44.4959x + 55.8154x^2 - 28.8526x^3 + 5.59568x^4$$

Osservazione 1. Sapendo che i punti di appoggio sono relativi alla funzione $f(x) = \exp(x)/\sin(x)$, possiamo dare una stima dell'errore massimo che si può commettere utilizzando il polinomio interpolatore al posto della funzione.

La stima dell'errore massimo che si può commettere¹ usa la formula del resto di Lagrange. Possiamo scrivere infatti:

$$|E_n(x)| \le \max_{x \in I_x} \left[|F(x)| \frac{|f^{(n+1)}(x)|}{(n+1)!} \right].$$

In questo esercizio n=4, e quindi si ha:

$$|E_4(x)| \le \max_{x \in I_x} \left[|F(x)| \frac{|f^{(5)}(x)|}{5!} \right].$$

Con conti lunghi ma semplici si ottiene che la derivata quinta della f(x) vale:

$$f^{(5)}(x) = \frac{e^x}{\sin^6(x)} \left[-478\cos(x) - 3\cos(3x) + \cos(5x) + 230\sin(x) + 85\sin(3x) - \sin(5x) \right],$$

e risulta essere una funzione crescente per $x \in I_x$, per cui il suo valore massimo si ottiene per x = 2.5 e vale $f^{(5)}(2.5) = 39793.9$. Usando Newton Raphson per trovare gli zeri di F'(x) si trova che la F(x) = (x - 0.1)(x - 0.5)(x - 1.1)(x - 1.8)(x - 2.5) assume valore massimo in $x^* = 2.25569$ che vale $|F(x^*)| = 0.486952$. Mettendo tutto insieme otteniamo:

$$|E_4(x)| \le |F(x^*)| f^{(5)}(2.5)/5! = 0.486952 * 39793.9/120 = 161.481.$$

Si noti che questo valore è assai pessimistico. Analizzando l'errore vero $E_4(x) = p_4(x) - f(x)$, e usando il metodo di Newton Raphson per trovare gli zeri della sua derivata prima, si scopre che la funzione $E'_4(x)$ ha 5 zeri in I_x che valgono $x_1 = 0.193095$, $x_2 = 0.734279$, $x_3 = 1.42398$, $x_4 = 2.03462$, $x_5 = 2.40515$, e il valore massimo è molto più piccolo e vale:

$$\max_{x \in I_x} |E_4(x)| = E_4(x_1) = 1.95803.$$

Osservazione 2. E' agevole trovare il polinomio di grado 3 che interpola i primi 4 punti della tabella: coincide con i primi 4 termini dell'equazione precedente, e vale:

$$p_3(x) = 11.0702$$

$$-19.0780(x - 0.1)$$

$$+18.9646(x - 0.1)(x - 0.5)$$

$$-9.26771(x - 0.1)(x - 0.5)(x - 1.1)$$

$$= 14.436 - 37.0368x + 34.7197x^2 - 9.26771x^3$$

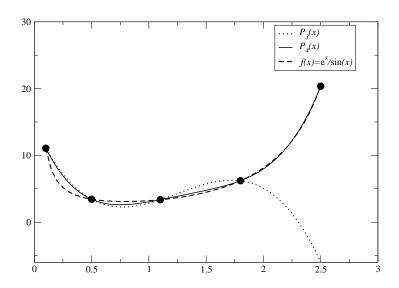


FIGURA 1: Andamento della funzione f(x) e dei suoi polinomi interpolatori $p_3(x)$ e $p_4(x)$. E' evidente come l'uso di p_3 al di fuori del suo intervallo di interpolazione sia inaccurato. In questo caso si nota anche un'oscillazione tipica del fenomeno di Runge.

La figura 1 mostra la funzione originale f(x), i punti di appoggio e i polinomi $p_3(x)$ e $p_4(x)$. Si vede chiaramente come p_3 , usato qui in estrapolazione poichè il suo intervallo di interpolazione si ferma al punto x_3 , non sia accurato per $x > x_3$.

2. Vogliamo determinare il polinomio di grado 1 $p_1(x) = a_0 + a_1x$ che minimizza la somma degli scarti quadratici verticali. Impostiamo la seguente tabella:

i	x_i	y_i	x_i^2	x_iy_i	y_i^2
0	0.1	11.0702	0.01	1.10702	122.549
1	0.5	3.43895	0.25	1.71948	11.8264
2	1.1	3.37089	1.21	3.70798	11.3629
3	1.8	6.21211	3.24	11.1818	38.5903
4	2.5	20.3560	6.25	50.8900	414.367
Somma	6	44.4482	10.96	68.6063	598.696

La somma degli scarti quadratici verticali è data da:

$$S_v(a_0, a_1) = \sum_{i=0}^{4} [a_0 + a_1 x_i - y_i]^2.$$

Ripetendo gli sviluppi riportati sopra si trova che il sistema da risolvere per calcolare a_0 e a_1 è:

$$\left[\begin{array}{cc} 5 & 6 \\ 6 & 10.96 \end{array}\right] \left[\begin{array}{c} a_0 \\ a_1 \end{array}\right] = \left[\begin{array}{c} 44.4482 \\ 68.6063 \end{array}\right]$$

la cui soluzione è $a_0=4.01671$ e $a_1=4.06077$, per cui si ha:

$$p_1(x) = 4.01671 + 4.06077x$$

Osservazione 3. In modo simile a quanto fatto sopra, si potrebbe considerare di minimizzare gli scarti quadratici orizzontali. Osserviamo che basta procedere come nel modo precedente ma scambiando il ruolo di x e y. Quindi scriviamo il polinomio come $p'_1(y) = b'_0 + b'_1 y$ e andiamo a minimizzare la la somma degli scarti quadratici orizzontali data da:

$$S'_o(b'_0, b'_1) = \sum_{i=0}^4 [b_0 + b'_1 y_i - x_i]^2.$$

Ripetendo gli sviluppi riportati sopra si trova che il sistema da risolvere per calcolare b'_0 e b'_1 è:

$$\begin{bmatrix} m+1 & \sum y_i \\ \sum y_i & \sum y_i^2 \end{bmatrix} \begin{bmatrix} b_0' \\ b_1' \end{bmatrix} = \begin{bmatrix} \sum x_i \\ \sum y_i x_i \end{bmatrix}$$

¹Come si vede dalla complessità dello svolgimento successivo, questo punto non è il tipico esercizio d'esame

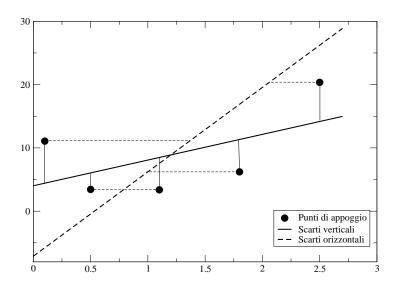


Figura 2: Punti di appoggio e rette ai minimi quadrati che minimizzano gli scarti verticali e gli scarti orizzontali.

e quindi

$$\begin{bmatrix} 5 & 44.4482 \\ 44.4482 & 598.696 \end{bmatrix} \begin{bmatrix} b'_0 \\ b'_1 \end{bmatrix} = \begin{bmatrix} 6 \\ 68.6063 \end{bmatrix}$$

la cui soluzione è $b_0'=0.533239$ e $b_1'=0.750044\times 10^{-1}$, per cui si ha:

$$p_1'(y) = 0.533239 + 0.750044 \times 10^{-1} y$$

e scrivendo il polinomio in forma canonica in funzione di x otteniamo:

$$p_1(x) = b_0 + b_1 x = -7.10944 + 13.3326 x.$$

I grafici dei due polinomi con i punti di appoggio sono mostrati in Figura 2.

Per verificare quale delle due rette ha migliori proprietà di approssimazione, andiamo a verificare le somme degli scarti quadratici. Otteniamo:

$$S_v = \sum_{i=0}^{4} [4.01671 + 4.06077 \ x_i - y_i]^2 = 141.566$$

$$S_o = \sum_{i=0}^{4} [-7.10944 + 13.3326 \ x_i - y_i]^2 = 464.799$$

$$S_o = \sum_{i=0}^{4} \left[-7.10944 + 13.3326 \ x_i - y_i \right]^2 = 464.799$$

da cui si deduce che l'approssimazione migliore si ottiene con la retta che minimizza gli scarti verticali. Si noti che per questo confronto di ottimalità abbiamo usato il S_o e non S'_o . Infatti il valore di S_o sopra indicato non è uguale a quello di S'_o , mentre il punto di minimo delle due somme è lo stesso ma rappresentato in sistemi di riferimento diversi. E' quindi importante usare lo stesso sistema di riferimento quando si fanno i confronti di ottimalità, e quindi usare le somme degli scarti quadratici riferite allo stesso sistema Oxy.

3. Vogliamo determinare il polinomio di grado 2 $p_2(x) = a_0 + a_1 x^2$ che minimizza la somma degli scarti quadratici verticali. Notiamo che la somma è ancora funzione di due incognite a_0 e a_1 :

$$S_2(a_0, a_1) = \sum_{i=0}^{4} \left[a_0 + a_1 \ x_i^2 - y_i \right]^2.$$

Imponendo l'annullarsi delle due derivate parziali, otteniamo il seguente sistema:

$$\begin{cases} 5a_0 + \left(\sum_{i=0}^m x_i^2\right) a_1 = \sum_{i=0}^m y_i \\ \left(\sum_{i=0}^m x_i^2\right) a_0 + \left(\sum_{i=0}^m x_i^4\right) a_1 = \sum_{i=0}^m x_i^2 y_i. \end{cases}$$

Abbiamo bisogno dei valori della seguente tabella per il calcolo della matrice e del termine noto:

i	x_i^2	x_i^4	y_i	$x_i^4 y_i$
0	0.01	0.0001	11.0702	0.110702
1	0.25	0.0625	3.43895	0.859737
2	1.21	1.4641	3.37089	4.07878
3	3.24	10.498	6.21211	20.1272
4	6.25	39.063	20.3560	127.225
Somma	10.96	51.087	44.4482	152.401

Il sistema lineare diventa quindi:

$$\begin{bmatrix} 5 & 10.9600 \\ 10.9600 & 51.087 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 44.4482 \\ 152.401 \end{bmatrix}$$

la cui soluzione è $a_0=4.43709$ e $a_1=2.03127$, per cui si ha:

$$p_2(x) = 4.43709 + 2.03127 x^2$$

La parabola è disegnata in Figura 3, dove sono anche disegnate per confronto e rette del punto precedente.

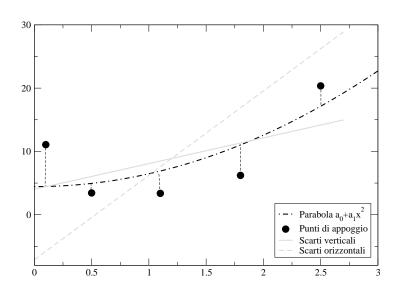


Figura 3: Punti di appoggio e parabola ai minimi quadrati che minimizza gli scarti verticali. In grigio sono mostrate per confronto le rette ai minimi quadrati del punto 2.