1. [6 points] Assume the NFA A whose transition function is graphically represented below.

Consider the algorithm for transforming a FA into a regular expression, based on state elimination. Apply the following steps in the given order:

(a) eliminate state q_1 from A, and display the resulting automaton A';
(b) eliminate state q_3 from A', and display the resulting automaton A'';
(c) convert A'' into the equivalent regular expression E_{q_2}.

If you simplify any of the resulting regular expressions, add some discussion.

Solution Recall that, for every regular expression R, we have $\emptyset + R = R$, $\emptyset R = R \emptyset = \emptyset$, and $\epsilon R = R \epsilon = R$. We use these simplifications several times below.

(a) After the elimination of q_1 from A we obtain the automaton A', graphically represented as
(b) After the elimination of \(q_3 \) from \(A' \) we obtain the automaton \(A'' \), graphically represented as

![Automaton Graph]

(c) The automaton \(A'' \) has two states, with the initial and the final states representing distinct states. We then need to apply the expression \(E_q = (R + SU^*T)^*SU^* \).

Considering that in our case we have

\[
R = 11^*1 \\
S = 0 + (0 + 11^*0)0^*1 \\
U = 00^*1 \\
T = \emptyset
\]

we obtain the regular expression

\[
E_{q_2} = (11^*1 + (0 + (0 + 11^*0)0^*1)(00^*1)^*\emptyset)(0 + (0 + 11^*0)0^*1)(00^*1)^* \\
= (11^*1 + \emptyset)^*(0 + (0 + 11^*0)0^*1)(00^*1)^* \\
= (11^*1)^*(0 + (0 + 11^*0)0^*1)(00^*1)^*.
\]

2. [9 points] Consider the following languages, defined over the alphabet \(\Sigma = \{a, b\} \):

\[
L_1 = \{ba^mba^n b \mid m, n \geq 1, m < n\} \\
L_2 = \{ba^mb^n a \mid m, n \geq 1, m < n\} \\
L_3 = L_2L_1
\]

For each of the above languages, state whether it belongs to \(\text{REG} \), to \(\text{CFL} \setminus \text{REG} \), or else whether it is outside of \(\text{CFL} \). Provide a mathematical proof for all of your answers.

Solution

(a) \(L_1 \) belongs to the class \(\text{CFL} \setminus \text{REG} \).

We first show that \(L_1 \) is not a regular language, by applying the pumping lemma for this class. Let \(N \) be the pumping lemma constant for \(L_1 \). We choose the string \(w = ba^Nb^an+1b \in L_1 \) with \(|w| \geq N \), and consider all possible factorizations \(w = xyz \) satisfying the conditions \(|y| \geq 1 \) and \(|xy| \leq N \). We distinguish two cases.
Case 1: y spans the leftmost occurrence of b in w, and possibly more symbols from w. This means that $x = \epsilon$. We then choose $k = 0$ and obtain the string $w_0 = xy^0z = z$ which has fewer than 3 occurrences of symbol b, and therefore $w_0 \notin L_1$.

Case 2: y does not span the leftmost occurrence of b in w. Because of the condition $|xy| \leq N$, we have that y can only contain occurrences of symbol a, with these occurrences placed to the left of the second occurrence of symbol b in w. In this case, we choose $k = 2$ and obtain the string $w_2 = xy^2z$ which has the form $ba^{N+|y|}ba^{N+1}b$. Because of the condition $|y| \geq 1$, we have that $N + |y| \geq N + 1$, and therefore $w_2 \notin L_1$.

Since we have considered all possible factorizations for string w, we must conclude that L_1 is not a regular language.

As a second part of the answer, we need to show that L_1 belongs to the class CFL. Consider the CFG G_1 with productions:

$$S \to bAb$$
$$A \to aAa \mid aBa$$
$$B \to Ba \mid ba$$

It is not difficult to see that $L(G_1) = L_1$.

(b) L_2 belongs to the class REG.

To see this, we observe that we can rewrite the definition of this language as $L_2 = \{ba^n b \mid n \geq 3\}$.

It is then easy to see that the regular expression $R = baaaa^*b$ generates L_2.

(c) L_3 belongs to the class CFL\REG.

The easy part here is to show that L_3 is in CFL. We have already seen that L_2 is in REG and therefore in CFL, and we have already shown that L_1 is in CFL. Since $L_3 = L_2L_1$, and since the class CFL is closed under concatenation, we conclude that L_3 is in CFL.

We now prove that L_3 is not a regular language, again by applying the pumping lemma for this class. Let N be the pumping lemma constant for L_3. We choose the string $w = ba^3bba^Nba^{N+1}b \in L_3$ with $|w| \geq N$, and consider all possible factorizations $w = xyz$ satisfying the conditions $|y| \geq 1$ and $|xy| \leq N$. We observe that string w has three runs of symbols a: the first of length 3, the second of length N, and the third of length $N + 1$. We call these three runs block 1, block 2, and block 3, respectively. We distinguish three cases.

Case 1: y spans at least one occurrence of b from w. We then choose $k = 0$ and obtain the string $w_0 = xy^0z = xz$ which has fewer than 5 occurrences of symbol b, and therefore $w_0 \notin L_3$.

Case 2: y spans zero occurrence of b and a few occurrences of symbol a from block 1 only. We choose $k = 0$ and obtain the string $w_0 = xy^0z = xz$ which has the form $ba^{3-|y|}ba^Nba^{N+1}b$. Because of the condition $|y| \geq 1$, we have $3 - |y| < 3$, and therefore $w_0 \notin L_3$.

Case 3: y spans zero occurrence of b and a few occurrences of symbol a from block 2 only. We choose $k = 2$ and obtain the string $w_2 = xy^2z$ which has the form $ba^3bba^{N+|y|}ba^{N+1}b$. Because of the condition $|y| \geq 1$, we have that $N + |y| \geq N + 1$, and therefore $w_2 \notin L_3$.

Since we have considered all possible factorizations for string w, we must conclude that L_3 is not a regular language.

We observe that the above proof showing that L_3 is not in REG is a little bit involved. There is an alternative, simpler way of proving that L_3 is not a regular language. Assume by now
that L_3 is a regular language. From known properties of regular languages, it follows that L_3^R is also a regular language, where R is the string reversal operator, extended to languages as usual. Observing that we have $L_3^R = L_1^R L_2^R$, the language L_3^R can be rewritten as

$$L_3^R = \{ba^m ba^n bba^p b \mid m, n \geq 1, m > n, p \geq 3\}$$

We can now apply the pumping lemma to L_3^R, resulting in a proof that is very similar to the proof for L_1, consisting only of two cases. We then find that L_3^R is not a regular language, and we must therefore conclude that L_3 cannot be regular as well.

3. [6 points] With reference to the membership problem for context-free languages, answer the following two questions.

(a) Specify the dynamic programming algorithm reported in the textbook for the solution of this problem.

(b) Consider the CFG G in Chomsky normal form defined by the following rules:

- $S \rightarrow CD$
- $C \rightarrow AC' \mid c$
- $C' \rightarrow CB$
- $A \rightarrow a$
- $B \rightarrow b$
- $D \rightarrow DD \mid d$

Assuming as input the CFG G and the string $w = aacbbdddd$, trace the application of the algorithm in (a).

Solution

(a) The required dynamic programming algorithm is reported in Section 7.4.4 of the textbook.

(b) On input w and G, the algorithm constructs the table reported below.
4. [5 points] Assess whether the following statements are true or false. Provide motivations for all of your answers.

(a) Let L_1, L_3 be in REG (the class of regular languages) and let L_2 be in CFL. Then the language $L_1L_2L_3$ is always in REG.

(b) Let L_1, L_3 be in REG and let L_2 be in CFL. Then the language $L_1L_2L_3$ is always in CFL.

(c) The class RE defined over the alphabet $\Sigma = \{0, 1\}$ is closed under complementation.

(d) The class \mathcal{P} of languages over the alphabet $\Sigma = \{0, 1\}$ that can be recognized in polynomial time by a TM is closed under complementation.

Solution

(a) False. Consider as a counterexample the regular languages $L_1 = L_3 = \{\epsilon\}$ and the context-free language $L_2 = \{a^n b^n \mid n \geq 1\}$. Observe that $L_1L_2L_3 = L_2$, and we know that L_2 is not a regular language.

(b) True. We know that a language in REG is also a language in CFL. We also know that the class CFL is closed under concatenation. Therefore $L' = L_1L_2$ must be in CFL, and $L'L_3 = L_1L_2L_3$ must be in CFL.

(c) False. As a counterexample consider the language L_{ne} in RE, defined in the textbook. Consider also the language L_e, which is the complement of L_{ne} with respect to Σ^*. We now that L_e is not in RE.

(d) True. Consider an arbitrary language $L \in \mathcal{P}$. By the definition of the class \mathcal{P}, there exists a TM M such that $L(M) = L$, and M stops after a polynomial number of steps in the size of its input w. We can then construct a TM M' that, given as input a string w, simulates M on w. When the simulation stops in a state q, that is, when there is no next move for M, M' moves to a final state if q is not a final state for M, and M' moves to a non-final state if q is a final state.
for M. It is easy to see that $L(M') = \overline{L}$ and that M' runs in polynomial time. We therefore conclude that P is closed under complementation.

5. **[7 points]** Let R be the string reversal operator, extended to languages as usual. Consider the following property of the RE languages defined over the alphabet $\Sigma = \{0, 1\}$

\[
P = \{L \mid L \in \text{RE}, L \cap L^R = \emptyset\}
\]

where the condition $L \cap L^R = \emptyset$ means that for every string $w \in L$, w^R does not belong to L. Define $L_P = \{\text{enc}(M) \mid L(M) \in P\}$.

(a) Use Rice’s theorem to show that L_P is not in REC.

(b) State whether L_P is in $\text{RE} \setminus \text{REC}$ or else outside of RE.

Solution

(a) We have to show that property P is not trivial.

- $P \neq \emptyset$. Consider the language $L = \{1100\}$. Since L is finite, L is also in RE. Observe that $L^R = \{0011\}$ and $L \cap L^R = \emptyset$. Therefore $L \in P$.

- $P \neq \text{RE}$. Consider the language $L = \{1100, 0011\}$. Since L is finite, L is also in RE. Observe that $L \cap L^R = L \neq \emptyset$, and therefore $L \notin P$.

(b) We now show that L_P is not in RE. The most convenient way to do this is to consider the complement language $L_P^c = L_{\overline{P}}$, where \overline{P} is the complement of class P with respect to RE and can be specified as

\[
\overline{P} = \{L \mid L \in \text{RE}, L \cap L^R \neq \emptyset\}
\]

We specify a nondeterministic TM N such that $L(N) = L_{\overline{P}}$. Since every nondeterministic TM can be converted into a standard TM, this shows that $L_{\overline{P}}$ is in RE. Our nondeterministic TM N takes as input the encoding of a TM M and performs the following steps.

- N nondeterministically guesses a string $w \in \Sigma^*$ and checks that $w \in L(M)$ and $w^R \in L(M)$ are both satisfied.

- If the previous step terminates and is successful, N ends the computation in a final state. In all other cases, N ends the computation in a non-final state or runs for ever.

It is not difficult to see that $L(N) = L_{\overline{P}}$.

Since $L_{\overline{P}}$ is in RE, if its complement language L_P were in RE as well, then we would conclude that both languages are in REC, from a theorem in Chapter 9 of the textbook. But we have already shown in (a) that L_P is not in REC. We must therefore conclude that L_P is not in RE.