
signet.dei.unipd.it

Output results and data analysis

Filippo Campagnaro, Roberto Francescon,
Angela Soldà, Michele Zorzi

filippo.campagnaro@unipd.it

UNWiS - Padova (Italy)
30th of January – 3rd of February 2023

http://signet.dei.unipd.it/

<Filippo Campagnaro> <campagn1@dei.unipd.it> 2

Analyzing the results
How to output relevant information in DESERT

and analyze it: best-practices and how-tos

Current state

• DESERT does not currently have a uniform data

output mechanism

• For many reasons: one is that simulations have

requirements so diverse that it was best to leave

to the user their definition

• So, along with the module structure, we can

also define the data that are outputted and their

format

<Filippo Campagnaro> <campagn1@dei.unipd.it> 3

In the script closing function

The best way to output results in desert is via the Tcl

script ending function: here we see an example

4

proc finish {} {
global ns opt outfile
if ($opt(verbose)) {
puts "Simulation summary"
puts "--"
puts "Total simulation time : [expr $opt(stoptime)-$opt(starttime)] s"
puts "Packet size : $opt(pktsize) byte(s)"
puts "CBR period : $opt(cbr_period) s"
}

}

This function is usually called finish: in it, you can

perform all the statistical calculations needed

The finish procedure

(of course, the finish procedure can be called whatever

one desires)

In this function, we can perform all the computations

we need to get all the measurements we want

5

proc finish {} {
global ns opt outfile
set sum_throughput 0
for {set i 0} {$i < $opt(nn)} {incr i} {

for {set j 0} {$j < $opt(nn)} {incr j} {
set part_throughput [$cbr($i,$j) getthr]

}
set sum_throughput [expr $sum_throughput + $part_throughput]

}
set mean_throughput [expr ($sum_throughput/(($opt(nn))*($opt(nn)-1)))]
puts "Mean Throughput : $mean_throughput "

}

finish: write to file

Instead of printing to stdout, we can write to a file the

metrics gathered in the finish function

6

proc finish {} {
global ns opt outfilename
set outfile [open $outfilename w+]
for {set i 0} {$i < $opt(nn)} {incr i} {
...

puts $outfile [format "%3d %3d" [clock seconds] [$mean_throughput]]
...
}
close $outfile

}

Outputting from C++

Sometimes it is needed to access data and variables

that are not available in the Tcl script or, you need to

resort to the logs

In these cases, it is important to have a consistent

format of the output logs

7

void
UwModule::printOnLog(LogLevel log_level, std::string module,

std::string message)
{

...
}

Having a function dedicated can help

Log function in C++

Let's see how we can implement it (example)

8

enum class LogLevel { ERROR = 0, INFO = 1, DEBUG = 2 };
void printOnLog(LogLevel log_level, std::string module, std::string message);

void
UwModem::printOnLog(LogLevel log_level, std::string module, std::string message)
{

LogLevel actual_log_level = getLogLevel();
if (actual_log_level >= log_level) {

double timestamp = getEpoch();
std::string ll_descriptor = "";
log2string(log_level, ll_descriptor);

outLog << std::setprecision(15) << left << ll_descriptor
<< "::[" << timestamp << "]::" << module
<< "(" << nodeID << ")::" << message << std::endl;

outLog.flush();
}

}

- very useful to

discriminate log levels

- important also to put a

timestamp reference

The message is the main

content of the log message

Parsing log files

Having a consistent format across the log messages

outputted from C++ is fundamental to ease the parsing

9

MODULE::DEBUG::startTx::TRANSMITTING_PACKET
MODULE::DEBUG::endTx::END_TRANSMISSION
MODULE::DEBUG::configure::SETTING_OPERATION
MODULE::DEBUG::configure::SETTING_PERIOD
MODULE::ERROR::startRx::UNREADABLE_HEADER
...

Name pf the module outputting

the log: std::string module

Log level: LogLevel log_level Log message: std::string message

Then we can parse with whatever

tool we are more comfortable with

Tracefiles

DESERT inherits from ns2 the tracing support

Tracing is way of recording reception, transmission

and dropping of packets

10

set node($id) [$ns create-M_Node $opt(tracefile) $opt(cltracefile)]

	Slide 1: Output results and data analysis
	Slide 2
	Slide 3: Current state
	Slide 4: In the script closing function
	Slide 5: The finish procedure
	Slide 6: finish: write to file
	Slide 7: Outputting from C++
	Slide 8: Log function in C++
	Slide 9: Parsing log files
	Slide 10: Tracefiles

