
signet.dei.unipd.it

Schedulers and packers

Filippo Campagnaro, Roberto Francescon,
Angela Soldà, Antonio Montanari, Michele Zorzi

filippo.campagnaro@unipd.it

UNWiS - Padova (Italy)
30th of January – 3rd of February 2023

http://signet.dei.unipd.it/

<Filippo Campagnaro> <campagn1@dei.unipd.it> 2

Schedulers and clocks
The structure of events scheduling and timers

and how to define your handlers

Basics of ns2

• DESERT directly inherits its simulator inner

structure from ns2

• ns2 is based on a linked list of Events

• The Event is the node (of this linked list) and

possess also its handler: the event consumer

<Filippo Campagnaro> <campagn1@dei.unipd.it> 3

class Event {
public:

Event* next_; /* event list */
Event* prev_;
Handler* handler_; /* handler to call when event ready */
double time_; /* time at which event is ready */
scheduler_uid_t uid_; /* unique ID */
Event() : time_(0), uid_(0) {}

};

Event and handler

• An Event abstracts exactly what the name

suggests

• It has:

• a time of happening

• the link to the previous and

• the next Event

• the Handler reference

• The Handler is a class that takes care of doing

what the Event is supposed to perform: it

consumes the event through the method handle

4

Scheduler

5<Filippo Campagnaro> <campagn1@dei.unipd.it>

class Scheduler : public TclObject {
public:

static Scheduler& instance() {
return (*instance_); // general access to scheduler

}
void schedule(Handler*, Event*, double delay); // sched later event
virtual void run(); // execute the simulator
virtual void cancel(Event*) = 0; // cancel event
virtual void insert(Event*) = 0; // schedule event
virtual Event* lookup(scheduler_uid_t uid) = 0; // look for event

protected:
void dispatch(Event*); // execute an event
void dispatch(Event*, double); // exec event, set clock_
double clock_;

...

• Manager of Events, sort of clock or calendar

• An idea of what it does can be seen directly from

declaration and its methods

Scheduling events

• The scheduler has its own time reference: clock_

• Scheduling an Event implies:

• setting its Handler (what should be done)

• increasing the ID count and assigning it to the Event

• setting the Event's time_: the time at which the

Handler must be called, and the Event consumed

(clock_ + delay)

• Scheduler::dispatch() really just calls the

Handler for the Event

• the clock_ is then updated to dispatch time

• The Scheduler runs until it is stopped

6<Filippo Campagnaro> <campagn1@dei.unipd.it>

RealTime is different

• The process of dispatching Events in the

Scheduler is the same in all schedulers

• Time management is what changes in RealTime

scheduler

• The clock_ variable of the RealTime scheduler is

constantly set with the current time of the host

machine: clock_ = tod();

• as usual, after each consumed event

• And, as usual, the time of an Event is checked

against clock_

7

Using schedulers in Tcl

• in a simulation, we are going to use a Calendar
scheduler (default)

• for connecting DESERT to actual modems, we need
to use the RealTime scheduler

$ns use-scheduler RealTime

If you want to use a different scheduler:

$ns use-scheduler <scheduler-name>

This is all that is required to use the different schedulers

8

Built-in scheduler and handlers

The simulation events processing has built-in
scheduler and handlers to manage common tasks to
all simulations

Packets inherits from Event and, when Packet p is
created and sent down the stack, it is scheduled

9

Scheduler::instance().schedule(this, p, delay);

This is performed inside the instance inheriting from

Handler, that manages packets traces along the stack

delay must be calculated based on the protocols

Defining handlers in C++

We can define handlers (not schedulers!) in our C++

code, that can help us in programming on event-

based protocols

10

class MyModuleTimer : public TimerHandler
{
public:

MyModuleTimer(MyModule *m)
: TimerHandler()

{
assert(m != NULL);
module = m;

}

protected:
virtual void expire(Event *e);
MyModule *module;

}

MyModule is the module

inside which this new

timer is declared and

defined: you want to act

on MyModule, ususally

Derive your new timer

from TimerHandler: it is

less error-prone and

there are features

already implemented

This really is the function

you need to define: here

you specify what your

protocol does in case

something else happens

An example: TDMA

TDMA is a good example as it is a time-based
protocol

11

void
UwTDMATimer::expire(Event *e) {

((UwTDMA *) module)->changeStatus();
}

UwTDMATimer tdma_timer;

Where the changeStatus sets the node time slot

if (slot_status == UW_TDMA_STATUS_MY_SLOT) {
slot_status = UW_TDMA_STATUS_NOT_MY_SLOT;
tdma_timer.resched(frame_duration - slot_duration + guard_time);

...

<Filippo Campagnaro> <campagn1@dei.unipd.it> 12

Packers
Going physical: what packers are and what

purpose they serve

What packers are

• Packers are DESERT modules used to translate from

virtual packets, used in simulations, to real packets, to

be transmitted on the channel

• The packer class is defined in the Adaptation Layer

(AL) module folder and inherits from TclObject:

provides the methods to pack and unpack virtual

packets and their headers

• The AL class is derived from MPhy and provides

methods to fragment and re-assemble the packets

13<Filippo Campagnaro> <campagn1@dei.unipd.it>

class Uwal : public MPhy
{

packer *pPacker;
}

What packers achieve

The packer module allows to move from the

simulation to the real-field trial. It resides in the

Adaptation Layer folder and is responsible for

forging the header and the payload for the actual

packet

It maps an NS-Miracle packet into a legal modem

payload (i.e., a string of binary characters)

14<Filippo Campagnaro> <campagn1@dei.unipd.it>

std::string packPayload(Packet *);
std::string packHdr(Packet *);

Packers: nuts and bolts

Packers are used by the Adaptation Layer module

15

packer *pPacker; // uwal.h
pPacker->packHdr(p); // uwal.cpp
pPacker->packPayload(p); // uwal.cpp

The bitstream is written directly inside the same packet

for which translation was requested

unsigned char *buf = new unsigned char[hdr_length];
packMyHdr(p, buf, offset);
hdr_uwal *hal = HDR_UWAL(p);
memcpy(hal->binPkt(), buf, hdr_length); // packer.cpp

The AL then proceeds to send down the translated packet

sendDown(p); // uwal.cpp

Defining our own packers

If a new layer module is introduced, and its new header

does not have a correct way of serializing, we need to

define a new packer

Packer files are found in the Addons

Quite always, what you want is the correct way to

serialize the new header introduced by some layer you

developed:

• You don't need to rewrite payload packing

• You want to rewrite header packing/unpacking and

utility methods (header fields printing)

16

Overwrite pack/unpack

The functions you usually need to redefine are:

• init(): initialization of the packer fields

• packMyHdr(...): serialization functions that

translates virtual fields to actual bits

• unpackMyHdr(...): parser function that recovers

the virtual packet fields from the bitstream

17

void init();
size_t packMyHdr(packet*, unsigned char*, size_t);
size_t unpackMyHdr(unsigned char*, size_t, Packet*);
void printMyHdrMap();
void printMyHdrFields(Packet*);

Example: CBR header

18

We push to n_bits the fields we need to correctly serialize

and deserialize the header. They are assigned during

simulation via Tcl binding

void packerUWCBR::init() {

n_bits.clear();

n_bits.push_back(SN_Bits);
n_bits.push_back(RFTT_Bits);
n_bits.push_back(RFTT_VALID_Bits);
n_bits.push_back(TRAFFIC_TYPE_Bits);

}

Example: CBR header

In the following snippet we can see the serialization method

of the CBR

19

size_t packerUWCBR::packMyHdr(Packet* p, unsigned char* buf, size_t offset) {

hdr_cmn* ch = HDR_CMN(p);
hdr_uwcbr* uch = HDR_UWCBR(p);

if (ch->ptype() == PT_UWCBR) {
int field_idx = 0;

offset += put(buf, offset, &(uch->sn_), n_bits[field_idx++]);
offset += put(buf, offset, &(uch->rftt_), n_bits[field_idx++]);
offset += put(buf, offset, &(uch->rftt_valid_), n_bits[field_idx++]);
offset += put(buf, offset, &(uch->traffic_type_), n_bits[field_idx++]);

}
return offset;

}

How to use packers: setup

To correctly translates between virtual packets and

bits, we need to configure and add all the packers

for the various layers

20

set packer_ [new UW/AL/Packer]
set packer_payload0 [new NS2/COMMON/Packer]
set packer_payload1 [new UW/IP/Packer]
set packer_payload2 [new NS2/MAC/Packer]

$packer_ addPacker $packer_payload0
$packer_ addPacker $packer_payload1
$packer_ addPacker $packer_payload2

$uwal_ linkPacker $packer_

How to use packers: AL

To perform an emulation, using real modems, we need

to use packers. It is sufficient to include the AL in the

protocol stack

• instantiate an AL module

• add it to the protocol stack

• place it between the drivers layer and the layer above

(usually a MAC layer)

21<Filippo Campagnaro> <campagn1@dei.unipd.it>

set uwal [new Module/UW/AL]
...
$node addModule 2 $uwal 1 "UWAL"
...
$node setConnection $mac $uwal
$node setConnection $uwal $modem

	Slide 1: Schedulers and packers
	Slide 2
	Slide 3: Basics of ns2
	Slide 4: Event and handler
	Slide 5: Scheduler
	Slide 6: Scheduling events
	Slide 7: RealTime is different
	Slide 8: Using schedulers in Tcl
	Slide 9: Built-in scheduler and handlers
	Slide 10: Defining handlers in C++
	Slide 11: An example: TDMA
	Slide 12
	Slide 13: What packers are
	Slide 14: What packers achieve
	Slide 15: Packers: nuts and bolts
	Slide 16: Defining our own packers
	Slide 17: Overwrite pack/unpack
	Slide 18: Example: CBR header
	Slide 19: Example: CBR header
	Slide 20: How to use packers: setup
	Slide 21: How to use packers: AL

