—

At 852 UNIVERSITA p—Q
— DIINGEGNERA s DI PADOVA b d
= DELL'INFORMAZIONE .

signet.dei.unipd.it

Development of a DESERT
Addon and packet header

UNWIS - Padova (ltaly)
30th of January — 3" of February 2023

Filippo Campagnaro, Roberto Francescon,
Angela Solda, Michele Zorzi
AVAVAN

AVAVAN filippo.campagnaro@unipd.it

http://signet.dei.unipd.it/

DESERT structure

Architecture of the DESERT software stack and
modules and addons organization

{<»SIGNET

NS-MIRACLE inheritance

 DESERT inherits the modular structure of NS-
MIRACLE

* A general Module is implemented, along with
most basic layers (MMac, MPhy), inheriting from
this Module

« Before delving into development, check for
basic functionalities: they could be already
Implemented

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

Folders organization

DESERT, as it is downloaded from the main repo, is
organized in the following folders

DESERT_Framework DESERT_Addons
DESERT Installer packer_][]
physical data_link

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

Folders organization

* Once compiled, DESERT will create another
folder named DESERT buildCopy LOCAL atthe
root of the DESERT repo

* This folder contains the compiled elements and
the generated Makefiles: from here it is possible

to compile a single module

DESERT_buildCopy
DESERT_Framework DESERT_Addons _LOCAL
Sources and Sources and Compiled binaries
configuration for configuration for the and configured
compilation addons Makefiles

<> SIGNET [N

DESERT Addons

Features that do not fit in the core DESERT
structure

{<»SIGNET

What are Addons?

 An addon is a module that does not fit into the
core DESERT structure

* an addon is an external autotools project that
depends on DESERT, NS-MIRACLE and,
possibly, WOSS

* we need to create the addon internal
Makefile.am and a dedicated configure.ac
with m4 folder to resolve the dependencies

* we don't need to modify the DESERT top-level
Makefile.am nor configure.ac

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

Addon-module relationship

* A module will depend on some other modules or
classes of DESERT and will be compiled with
each DESERT installation

* An addon relies on some existing module or
classes, too, but its installation can be skipped, if
not needed
« for example, a common case is that of an addon

defining a required new packer for a protocol

« during installation, DESERT will ask you which addons
you want to install

<> SIGNET I

Where addons live

* The space where addons live is the
DESERT_Addons folder, seen previously

* At the top-level of DESERT folders hierarchy

DESERT_buildCopy
DESERT_Framework DESERT_Addons _LOCAL
Sources and Sources and Compiled binaries
configuration for configuration for the and configured
compilation addons Makefiles

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

Basic addon structure

* |Inside the DESERT_Addons folder, create your
addon folder, say cool-addon

 Create, inside this folder, the basics files for a
properly C++ module: cool-addon.h and cool-

addon. cpp

* Create also the initlib.cpp file, as for the

module

DESERT_Addons

el Ry

packer_[]

uwrov cool-addon

- cool-addon.h
- cool-addon.cpp
- initlib.cpp

{<»SIGNET

<Filippo Campagnaro> <campagnl@dei.unipd.it>

Additional files

* To make the addon compilable and complete we
need to add few more files
* aMakefile.am
 an initialization file for the Tcl: cool-addon-init.tcl
» the autogen. sh script
« The initlib.cpp file
 aconfigure.ac config file
* the m4 folder

These files will be explained in the next slides

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

The files for autotools

* The Makefile.am can be taken from another

addon or module and modified according to your
addon needs, similarly to the module

* Forthe configure.ac we follow a more
structured process

* We take one from another addon and copy into our
folder

* Modify the AC_INIT with the name of your addon:
AC _INIT(cool-addon, 1.0.0)

* |n case of WOSS, it is better to take the configure.ac
from another WOSS-based addon

<> SIGNET [

The initlib

* For the initlib.cpp file, we proceed as with a
module

#include <tclcl.h>

extern EmbeddedTcl CoolAddonTclCode;

extern "C" int
Cooladdon _Init()

{
CoolAddonTclCode.load();
return 9;

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

The Tcl initialization script

* To get rid of the Tcl compiler warnings is useful
to have a Tc1l variable initialization script:

cool-addon-init.tcl

« Add all the variables that you have binded in your

addon class
UW/PHY/CoolAddon set SN Bits 32
UW/PHY/CoolAddon set err Bits 5

UW/PHY/CoolAddon set Modulation Bits 5
UW/PHY/CoolAddon set Traffic Type Bits ©
UW/PHY/CoolAddon set debug 0

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

The autogen script

* The autogen.sh file is needed to compile your
addon

e copy an autogen.sh from another addon: it is the
fastest and safest way

e it does not need further modification

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

The m4 folder

 ltis easier to copy an m4 folder from another
addon: it contains the desert.m4 file

* we need to modify it, specifying the dependencies
we need for our addon
° listin dir and in 1ib the directories and libraries your

addon uses

for dir in \ for 1ib in '\
physical/uw-al \ uwal \
network/uwip \ uwip \
transport/uwudp \ uwudp \
application/uwcbr uwcbr

do do

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

Make DESERT aware

To have our addon visible during DESERT
installation, so that the Makefile installation flags are
setup by the DESERT installer, we modify an
iInstallation script: DESERT _Framework/.addon.list

We just need to add the name (cool-addon) of the
folder to the list

&sioNET I

Set up and ready

These are the basic steps needed to create a new
working addon in DESERT.

After you laid out these basic building blocks, go on
with an installation of the entire DESERT and mark
the new addon for installation: this will allow the
creation of all the files needed in compilation.

After this step, you can reach
DESERT _buildCopy LOCAL/.buildHost/DESERT_ADDON/cool-addon

and recompile the single addon, when needed.

<> SIGNET I

Creating a new header

How to define and implement a new header for
your packets

{<»SIGNET

Headers

DESERT is sending packets to-and-fro. Packets
have headers. Headers are powerful and critical
tools for managing communications networks.

Bit O 4 8 12 16 20 24 28

0
Version| Traffic Class
Payload Length Next Header Hop Limit

64

128 Source Address

192

256 Destination Address

<> SIGNET [

The header structure

A header in DESERT can be defined as one prefers

through a class or a struct: quite always, a struct is
enough

#include <packet.h>

typedef struct hdr_uwmyprotocol
{

uint8 t paraml_; /**< Parameter used by the protocol */

static int offset ; /**< Required by the PacketHeaderManager */

uint8 t getParam(){return paraml_;}

} hdr_uwmyprotocol instance;

myproto-hdr.h

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

The offset field [1]

The offset field, along with its getter method, is
necessary for the header manager so it knows how
many bits to skip to reach the correct header

#include <packet.h>
typedef struct hdr_uwmyprotocol
{
inline static struct &
access(const *D)
{
return (struct *) p->access(offset);
}

} hdr_uwmyprotocol instance; myproto-hdr. h

<> SIGNET [

The offset field [2]

This steps are necessary to allow easy integration with preexisting
structures: now every piece of DESERT will know your new header

#include <tclcl.h>

#include <myproto-hdr.h> Inherits from
yP PacketHeaderClass

static class : public

{
public:

MyProtoHeaderClass()
: PacketHeaderClass("PacketHeader/MYPROTO",

sizeof(hdr_uwmyprotocol))
{ Here the size of
this->bind(); your header is set

d binded with
bind_offset(&hdr_uwmyprotocol::offset); 2;&ﬂm ew

initlib.cpp OR myproto.cpp

<> SIGNET I

The header type

Now what is left to do is to define the type, af the
beginning of the header .h file

A type for each new header defined

extern packet t MY PACKET TYPE;

* these header files are usually put in the same folder
as the module

* our new header will be linked al visible throughout ns2
(and, so, DESERT)

<> SIGNET I

Access macro

It is requested also to define the function (via
macros) that allows to access the various fields of

the new header

#define HDR_UWMYPROTOCOL(p) (hdr_uwmyprotocol::access(p))
myproto-hdr.h

to be put at the beginning of the header file, along
with the pre-processor directives

<> SIGNET I

Putting everything together

 After having declared and defined the header
struct, implementing everything that is needed
« declare your new packet type (extern packet t)
» define the access macros
» define fields and methods of the header
* link with PacketHeaderClass and bind offset

Then it is possible to use the new header

hdr uwmyprotocol *myh = HDR_UWMYPROTOCOL(p);

uint8 t param = myh->getParam();
myh->paraml = calcParam();

<> SIGNET

Summarizing

#define HDR_UWMYPROTOCOL(p) (hdr_uwmyprotocol::access(p))
extern packet t MY_PACKET_TYPE;

typedef struct hdr_uwmyprotocol
{

}

/** rememeber to manage the offset_ field */

myproto-hdr.h

static class MyProtoHeaderClass : public PacketHeaderClass

{
}

/** remember to manage inheritance from PacketHeaderClass*/

initlib.cpp

<> SIGNET

	Slide 1: Development of a DESERT Addon and packet header
	Slide 2
	Slide 3: NS-MIRACLE inheritance
	Slide 4: Folders organization
	Slide 5: Folders organization
	Slide 6
	Slide 7: What are Addons?
	Slide 8: Addon-module relationship
	Slide 9: Where addons live
	Slide 10: Basic addon structure
	Slide 11: Additional files
	Slide 12: The files for autotools
	Slide 13: The initlib
	Slide 14: The Tcl initialization script
	Slide 15: The autogen script
	Slide 16: The m4 folder
	Slide 17: Make DESERT aware
	Slide 18: Set up and ready
	Slide 19
	Slide 20: Headers
	Slide 21: The header structure
	Slide 22: The offset field [1]
	Slide 23: The offset field [2]
	Slide 24: The header type
	Slide 25: Access macro
	Slide 26: Putting everything together
	Slide 27: Summarizing

