
signet.dei.unipd.it

Device drivers

Filippo Campagnaro, Roberto Francescon,
Angela Soldà, Antonio Montanari, Michele Zorzi

filippo.campagnaro@unipd.it

UNWiS - Padova (Italy)
30th of January – 3rd of February 2023

http://signet.dei.unipd.it/

<Filippo Campagnaro> <campagn1@dei.unipd.it> 2

What are drivers
What we mean by drivers in DESERT

Actual modem

To connect to a real device and test new protocols

developed through DESERT:

it is not enough to develop the packers

Once you have the correct translated bitstream,

you have the content...

but:

to effectively run a protocol, you need to ensure

timings and decisions, as defined by that protocol

and complying with modem operations

<Filippo Campagnaro> <campagn1@dei.unipd.it> 3

Modem (*)ware

• A COTS device, usually, has its own firmware

and, often, even its software

• It also has some way to communicate with it, such

as a socket or serial interface: a connector

• Finally, also some sort of notifications that allow to

know the status of the device and commands

operating, receiving, transmitting

4

What we call driver

5<Filippo Campagnaro> <campagn1@dei.unipd.it>

• A device driver in DESERT is a software module

that understands the language of a modem, be it

AT commands, serial bit sequences or APIs

• A device driver is able to operate the modem:

when to transmit and how, when to receive and

how, etc.

• It parses responses from the modem and can

correctly format commands

• It knows the status of a device and what this

status entails

<Filippo Campagnaro> <campagn1@dei.unipd.it> 6

Defining your own driver
You have your brand-new underwater modem,

and you want to connect it with DESERT

Structure (1/2)

The basic structure of any driver is shown

The driver makes use of the connector, to retrieve and send

bits, and of the interpreter to understand those bits

7

UwNewDriver

UwModem

NewModemInterpreter

Parser/Interpreter

UwSerial

Connector

Structure (2/2)

The previous structure, based on 3 classes, is not
mandatory, but is good practice: it helps in defining
your new driver

Interpreter: usually manages strings or chars
(uint). It is able to understand received bits,
classifying received tokens

Connector: Connector interface provide APIs to
send and retrieve bits. It is already implemented in
sockets (TCP and UDP) and serial. Evaluate if your
device uses another technology

8

The basics

• Device drivers are found in the physical layer

folder

• To declare your driver for, say, UwNewDriver,

start by declaring a class that inherits from
UwModem

9

class UwNewDriver : public UwModem
{
public:

UwNewDriver();
virtual ~UwNewDriver();

}

UwModem

The class UwModem provides a basis to build upon

• transmission and reception queues

• a handler for executing modem events

• the declaration of abstract methods such as
• recv(Packet* p)

• startTx(Packet* p)

• startRx(packet* p)

• endRx(Packet* p)

10

std::queue<Packet *> tx_queue;
std::queue<Packet *> rx_queue;

Packet arriving at the layer

We need to define what to do with packets arriving at

the layer

Because PHY is the last layer, the valid option is

packet is exiting (to be transmitted)

Packet from upper layers is received through the

recv(Packet* p) method

• first, we strip the headers (macros) then we can assure

the packet is going down

11

hdr_cmn *ch = HDR_CMN(p);
hdr_MPhy *ph = HDR_MPHY(p);
if (ch->direction() == hdr_cmn::DOWN);

Transmission of a packet (1/2)

• If the packet is going down the stack, we need to

fill in the fields of the PHY header

• then we can proceed with the transmission: this

means pushing the packet in the transmission

queue

12

ph->dstSpectralMask = 0;
ph->dstPosition = 0;
ph->dstAntenna = 0;
ph->modulationType = getModulationType(p);
ph->duration = getTxDuration(p);

tx_queue.push(p);

Transmission of a packet (2/2)

The transmission of the packet, then, proceeds by selecting

the packet from the tx queue, extracting the payload,

formatting the bits and sending them down the connector

13

hdr_mac *mach = HDR_MAC(p);
hdr_uwal *uwalh = HDR_UWAL(p);
std::string msg;
msg.assign(uwalh->binPkt(), uwalh->binPktLength());

std::string send_cmd = "SENDING"; // sending command
uint length = msg.size(); // size of the payload
std::string destination = std::to_string(dest); //destination node

std::string cmd = send_cmd +":"+ length+":"+ msg+":"+ destination;

connector->writeToDevice(cmd);

In this case, the command to be sent was a string

Reception of a packet (1/2)

• To receive a packet, we need to retrieve bits from

the interface that is connecting the modem to the

host machine (PC): we need a connector

• The first thing to do is understand what is

reserved word (for the modem) and what is

payload (data for the upper layers)

• That is, we need an interpreter

14

Reception of a packet (2/2)

Retrieving bits from the connection interface makes
use of the connector APIs

15

uint READ_BYTES;
char* buffer;
int n_bytes = connector->readFromDevice(buffer, READ_BYTES);

Then, we must proceed to parse the received bits to
understand what they carry

status_t state = interpreter->parse(buffer);
switch (state) {
case RECV:
// proceed to receive stuff
case ERROR:
// analyze the error

}

UwConnector

Connector interface declares methods such as

Currently implemented in DESERT:

• TCP (server/client)

• UDP

• serial interface

16

class UwConnector
{
public:
virtual bool openConnection(const std::string &path) = 0;
virtual int writeToDevice(const std::string& msg) = 0;
virtual int readFromDevice(void *wpos, int maxlen) = 0;

}

auto connector =
std::make_shared<UwSocket>();

connector->openConnection("1.1.1.1:555");
connector->writeToDevice(command);

Interpreter (1/2)

It is often cleaner and better to define a separate
class for the interpreter

The definition of the parse() method varies greatly,
but the goal is to understand what the received
message contains

17

class NewInterpreter
{
public:

NewInterpreter();
virtual ~NewInterpreter();

status_t parse(char* message);
}

Interpreter (2/2)

• The output of the method should be information

that helps the driver decide what to do:

• error messages: take action to understand and maybe

fix

• if configuration/monitoring is detected, cast the needed

values and schedule application of the new config

• if data is detected, locate and extract this data, and

schedule it to be sent to the upper layers

• AoB...

18

Data

Data-carrying packets contain bits that are to be sent up

19

retrievePayload(std::string message) {
char init_cmd; //bits or char identifying payload start
char end_cmd; //bits or char identifying payload end

auto it = std::search(message.begin(), message.end(),
init_cmd, end_cmd);

std::string data = std::string(it, message.end());
}

Packet* p;
hdr_uwal* uwalh = HDR_UWAL(p);
uwalh->binPktLength() = rx_payload.size();
std::copy(data.begin(), data.end(), uwalh->binPkt());
HDR_CMN(p)->direction() = hdr_cmn::UP;

Internal messages

Information like error messages and warnings or

configurations, act on the drivers itself

A good knowledge of the device processes is necessary

20

switch (response) {
case ERROR:

std::cout << "Modem ERROR" << std::endl;

case SENT_MSG:
std::cout << "Modem message sent" << std::endl;
nextPacket();

case INACTIVE:
std::cout << "Modem INACTIVE" << std::endl;
unblockModem();

}

State machines

It turns out it is effective to use state machines to

manage modems: by carefully designing a state machine

it is possible to ensure great deal of stability

21

CONFIGURING TRANSMITTING

RECEIVING

recv(p)

startRx()
status == RECV

and simplify the whole driver design

IDLE

<Filippo Campagnaro> <campagn1@dei.unipd.it> 22

Running an emulation/sea trial
How to actually use our brand-new driver in an

emulation, compared to a simulation

Overview

When we run an emulation or a sea test, we need to

substitute the simulated physical layer with the device

driver of the modems we are going to deploy

We need to make sure to have all the addresses (IP and

ports, or parameters of the serial conn.) and check that

everything is correctly set

Let's see how the protocol stack is set up, compared to a

simulation

23

Instantiating objects

24

APPLICATION LAYER
set app [new Module/UW/APPLICATION]
TRANSPORT LAYER
set transport [new Module/UW/UDP]
NETWORK LAYER: Static Routing
set routing [new Module/UW/StaticRouting]
IP interface
set ipif [new Module/UW/IP]
DATA LINK LAYER - MEDIA LINK LAYER
set mll [new Module/UW/MLL]
DATA LINK LAYER - MAC LAYER
set mac [new Module/UW/CSMA_ALOHA]
ADAPTATION LAYER
set uwal [new Module/UW/AL]
PHY LAYER
set modem [new Module/UW/UwModem/EvoLogicsS2C]

APPLICATION

UDP

StaticRouting

IP

MLL

CSMA_ALOHA

AL

EvoLogicsS2C

Instantiating objects

Things to notice

The IP interface ([new Module/UW/IP]) is different from

the routing protocol layer: it allows to be IP-compliant,

avoiding the predefined routing protocols, which are

instead implemented in the routing object

The Adaptation Layer is fundamental in the passage

from the software packets to the physical packets: it

manages translation of virtual packets (defined but non-

existent) to actual stream of bits, to be modulated and

sent over the channel

25

Adaptation Layer

The Adaptation Layer (AL) is responsible for converting

virtual packets into actual binary streams

It makes use of the packer to forge the header and the

payload from a virtual packet

The AL performs fragmentation and reassembling of

packets

26

class Uwal : public MPhy // AL inherits from MPhy basic physical module

std::queue<Packet *> sendDownPkts; /**< queue of the packet to send down to the
modem */
std::queue<Packet *> sendDownFrames; /**< queue of the frames to send down */
std::queue<Packet *> sendUpFrames; /**< queue of the frames to send up to the
upper protocols */
std::queue<Packet *> sendUpPkts; /**< queue of the packets to send up to the upper
protocols */

Adaptation Layer

• It is not needed to modify the Adaptation Layer

• It is necessary to include it in the protocol stack

and connect it to the right layers

27

$node_ addModule 3 $mac_ 1 "ALOHA"
$node_ addModule 2 $uwal_ 1 "UWAL"
$node_ addModule 1 $modem_ 1 "S2C"

$node_ setConnection $mll_ $mac_ trace
$node_ setConnection $mac_ $uwal_ trace
$node_ setConnection $uwal_ $modem_ trace

$uwal_ linkPacker $packer_

Packers setup

To have a correct translation from virtual packets to

actual binary streams, we need to correctly configure

and add the packers for the various layers

And then link the packer object to the AL

28

set packer_ [new UW/AL/Packer]
set packer_payload0 [new NS2/COMMON/Packer]
set packer_payload1 [new UW/IP/Packer]
set packer_payload2 [new NS2/MAC/Packer]

$packer_ addPacker $packer_payload0
$packer_ addPacker $packer_payload1
$packer_ addPacker $packer_payload2

$uwal_ linkPacker $packer_

Emulation/Sea test vs Simulation

29

APPLICATION

UDP

StaticRouting

IP

MLL

CSMA_ALOHA

AL

EvoLogicsS2C

CBR

UDP

StaticRouting

IP

MLL

TDMA

PHYSICAL

set app [new Module/UW/APPLICATION]
set udp [new Module/UW/UDP]
set ipr [new Module/UW/StaticRouting]
set ipif [new Module/UW/IP]
set mll [new Module/UW/MLL]
set mac [new Module/UW/CSMA_ALOHA]
set uwal [new Module/UW/AL]
set modem [new Module/UW/UwModem/EvoLogicsS2C]

set app($id) [new Module/UW/CBR]
set udp($id) [new Module/UW/UDP]
set ipr($id) [new Module/UW/StaticRouting]
set ipif($id) [new Module/UW/IP]
set mll($id) [new Module/UW/MLL]
set mac($id) [new Module/UW/TDMA]
set phy($id) [new Module/UW/PHYSICAL]

Emulation/Sea test vs Simulation

It is worth noting that, apart from the different
physical layer, there is, usually, other differences

A simulation can host all the nodes in the network

An emulation and a sea test usually run a single
node, as nodes are far away in a real-field trial and
thus, if no other way exist to reach the far away
nodes (e.g., Wi-Fi), for each node, we will have a
computer (or an SBC such as RasPi) on which the
DESERT instance is running

30

	Slide 1: Device drivers
	Slide 2
	Slide 3: Actual modem
	Slide 4: Modem (*)ware
	Slide 5: What we call driver
	Slide 6
	Slide 7: Structure (1/2)
	Slide 8: Structure (2/2)
	Slide 9: The basics
	Slide 10: UwModem
	Slide 11: Packet arriving at the layer
	Slide 12: Transmission of a packet (1/2)
	Slide 13: Transmission of a packet (2/2)
	Slide 14: Reception of a packet (1/2)
	Slide 15: Reception of a packet (2/2)
	Slide 16: UwConnector
	Slide 17: Interpreter (1/2)
	Slide 18: Interpreter (2/2)
	Slide 19: Data
	Slide 20: Internal messages
	Slide 21: State machines
	Slide 22
	Slide 23: Overview
	Slide 24: Instantiating objects
	Slide 25: Instantiating objects
	Slide 26: Adaptation Layer
	Slide 27: Adaptation Layer
	Slide 28: Packers setup
	Slide 29: Emulation/Sea test vs Simulation
	Slide 30: Emulation/Sea test vs Simulation

