—) DIPARTIMENTO
= DIINGEGNERIA
— DELL'INFORMAZIONE

UNIVERSITA P o
SIGNET
DI PADOVA O—C

signet.dei.unipd.it

Schedulers and packers

UNWIS - Padova (ltaly)
30th of January — 3" of February 2023

Filippo Campagnaro, Roberto Francescon,
Angela Solda, Antonio Montanari, Michele Zorzi
S VANAN

AVAVAN filippo.campagnaro@unipd.it

http://signet.dei.unipd.it/

Schedulers and clocks

The structure of events scheduling and timers
and how to define your handlers

{-»SIGNET

Basics of ns2

 DESERT directly inherits its simulator inner
structure from ns2

 nsZ2is based on a linked list of Events

 The Event is the node (of this linked list) and
possess also its handler. the event consumer

class {
public:
* next_; /* event list */
* prev_;
* handler_; /* handler to call when event ready */
time_; /* time at which event is ready */
uid_; /* unique ID */
Event() : time_(©), uid (0) {}
}s

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

Event and handler

* An Event abstracts exactly what the name
suggests

* |t has:
« atime of happening
 the link to the previous and
* the next Event
* the Handler reference

* The Handler is a class that takes care of doing
what the Event is supposed to perform: it
consumes the event through the method handle

<> SIGNET I

Scheduler

* Manager of Events, sort of clock or calendar

* An idea of what it does can be seen directly from

declaration and its methods
class : public TclObject {
public:
static Scheduler& instance() {
return (*instance); // general access to scheduler

}
schedule(Handler*, Event*, double delay); // sched later event

virtual run(); // execute the simulator
virtual cancel(Event*) = 0; // cancel event
virtual insert(Event*) = 0; // schedule event
virtual * lookup(scheduler_uid t uid) = 0; // look for event
protected:
dispatch(Event*); // execute an event
dispatch(Event*, double); // exec event, set clock_
clock_;

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

Scheduling events

* The scheduler has its own time reference: clock

« Scheduling an Event implies:
« setting its Handler (what should be done)

* increasing the ID count and assigning it to the Event

« setting the Event's time_: the time at which the
Handler must be called, and the Event consumed
(clock _ + delay)

- Scheduler: :dispatch() really just calls the
Handler for the Event
« the clock_is then updated to dispatch time
 The Scheduler runs until it is stopped

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

RealTime is different

* The process of dispatching Events in the
Scheduler is the same in all schedulers

* Time management is what changes in RealTime
scheduler

 The clock variable of the RealTime scheduler is

constantly set with the current time of the host
machine: clock = tod();

e as usual, after each consumed event

- And, as usual, the time of an Event is checked
against clock

<> SIGNET I

Using schedulers in Tcl

* in a simulation, we are going to use a Calendar
scheduler (default)

* for connecting DESERT to actual modems, we need
to use the RealTime scheduler

$ns use-scheduler RealTime

If you want to use a different scheduler:
$ns use-scheduler <scheduler-name>

This is all that is required to use the different schedulers

<> SIGNET I

Built-in scheduler and handlers

The simulation events processing has built-in

scheduler and handlers to manage common tasks to
all simulations

Packets inherits from Event and, when Packet p is
created and sent down the stack, it is scheduled

Scheduler::instance().schedule(this, p, delay);

This is performed inside the instance inheriting from
Handler, that manages packets traces along the stack

delay must be calculated based on the protocols

<> SIGNET I

Defining handlers in C++

We can define handlers (not schedulers!) in our C++
code, that can help us in programming on event-

Derive your new timer
based prOtOCOIS e " from TimerHandler: it is
class MyModuleTimer : public TimerHandler less error-prone and
{ there are features
public: already implemented

MyModuleTimer(*m)
: TimerHandler() '\ MyModule is the module
{ inside which this new
assert(m != NULL); timer is declared and
module = m; defined: you want to act
} on MyModule, ususally
protected: This really is the function
virtual expiregEvent *e); \ you need to define: here
*module; you specify what your
} protocol does in case

something else happens

{<»SIGNET

An example: TDMA

TDMA is a good example as it is a time-based
protocol

UwTDMATimer: :expire(*e) {
((*) module)->changeStatus();
}

tdma_timer;

Where the changeStatus sets the node time slot

if (slot_status == UW_TDMA STATUS MY _SLOT) {
slot status = UW_TDMA STATUS NOT_MY_SLOT;
tdma_timer.resched(frame_duration - slot duration + guard time);

<> SIGNET I

Packers

Going physical: what packers are and what
purpose they serve

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

What packers are

 Packers are DESERT modules used to translate from
virtual packets, used in simulations, to real packets, to
be transmitted on the channel

 The packer class is defined in the Adaptation Layer
(AL) module folder and inherits from TclObject:
provides the methods to pack and unpack virtual
packets and their headers

 The AL class is derived from MPhy and provides

methods to fragment and re-assemble the packets

class Uwal : public MPhy
{

}
S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

*pPacker;

What packers achieve

The packer module allows to move from the
simulation to the real-field trial. It resides in the
Adaptation Layer folder and is responsible for

forging the header and the payload for the actual
packet

It maps an NS-Miracle packet into a legal modem
payload (i.e., a string of binary characters)

std:: packPayload(*);
std:: packHdr(*);

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

Packers: nuts and bolts

Packers are used by the Adaptation Layer module

*pPacker; // uwal.h
pPacker->packHdr(p); // uwal.cpp
pPacker->packPayload(p); // uwal.cpp

The bitstream is written directly inside the same packet
for which translation was requested

*buf = new [hdr_length];
packMyHdr(p, buf, offset);
*hal = HDR_UWAL(p);
memcpy (hal->binPkt(), buf, hdr_length); // packer.cpp

The AL then proceeds to send down the translated packet
sendDown(p); // uwal.cpp

<> SIGNET

Defining our own packers

If a new layer module is introduced, and its new header
does not have a correct way of serializing, we need to
define a new packer

Packer files are found in the Addons

Quite always, what you want is the correct way to
serialize the new header introduced by some layer you
developed:

* You don't need to rewrite payload packing

* You want to rewrite header packing/unpacking and
utility methods (header fields printing)

<> SIGNET

Overwrite pack/unpack

The functions you usually need to redefine are:
« 1init(): initialization of the packer fields

* packMyHdr(...): serialization functions that
translates virtual fields to actual bits

* unpackMyHdr(...): parser function that recovers
the virtual packet fields from the bitstream

init();
packMyHdr (*, *,)5
unpackMyHdr (* s *)s
printMyHdrMap();
printMyHdrFields(*);

<> SIGNET I

Example: CBR header

We push to n_bits the fields we need to correctly serialize
and deserialize the header. They are assigned during
simulation via Tcl binding

void packerUWCBR::init() {
n_bits.clear();

n_bits.push back(SN_Bits);
n_bits.push _back(RFTT_Bits);
n_bits.push _back(RFTT_VALID Bits);
n_bits.push back(TRAFFIC _TYPE Bits);

<> SIGNET I

Example: CBR header

In the following snippet we can see the serialization method
of the CBR

packerUWCBR: :packMyHdr (* p, * buf, offset) {

* ch = HDR_CMN(p);
* uch = HDR_UWCBR(p);

if (ch->ptype() == PT_UWCBR) {
field_idx = ©;

offset += put(buf, offset, &(uch->sn_), n bits[field idx++]);

offset += put(buf, offset, &(uch->rftt), n bits[field idx++]);

offset += put(buf, offset, &(uch->rftt valid), n bits[field idx++]);
offset += put(buf, offset, &(uch->traffic_type), n bits[field idx++]);

}

return offset;

<> SIGNET I

How to use packers: setup

To correctly translates between virtual packets and
bits, we need to configure and add all the packers
for the various layers

set packer_ [new UW/AL/Packer]

set packer_payload® [new NS2/COMMON/Packer]
set packer_ payloadl [new UW/IP/Packer]

set packer payload2 [new NS2/MAC/Packer]

$packer_ addPacker $packer payloado
$packer_ addPacker $packer payloadl
$packer_ addPacker $packer payload2

$uwal linkPacker $packer

<> SIGNET [

How to use packers: AL

To perform an emulation, using real modems, we need
to use packers. It is sufficient to include the AL in the
protocol stack

* instantiate an AL module
* add it to the protocol stack

* place it between the drivers layer and the layer above
(usually a MAC layer)

set uwal [new Module/UW/AL]

$node addModule 2 $uwal 1 "UWAL"

$node setConnection $mac $uwal
$node setConnection $uwal $modem

S I G N ET <Filippo Campagnaro> <campagnl@dei.unipd.it>

	Slide 1: Schedulers and packers
	Slide 2
	Slide 3: Basics of ns2
	Slide 4: Event and handler
	Slide 5: Scheduler
	Slide 6: Scheduling events
	Slide 7: RealTime is different
	Slide 8: Using schedulers in Tcl
	Slide 9: Built-in scheduler and handlers
	Slide 10: Defining handlers in C++
	Slide 11: An example: TDMA
	Slide 12
	Slide 13: What packers are
	Slide 14: What packers achieve
	Slide 15: Packers: nuts and bolts
	Slide 16: Defining our own packers
	Slide 17: Overwrite pack/unpack
	Slide 18: Example: CBR header
	Slide 19: Example: CBR header
	Slide 20: How to use packers: setup
	Slide 21: How to use packers: AL

