
signet.dei.unipd.it

Development of a DESERT
Addon and packet header

Filippo Campagnaro, Roberto Francescon,
Angela Soldà, Michele Zorzi

filippo.campagnaro@unipd.it

UNWiS - Padova (Italy)
30th of January – 3rd of February 2023

http://signet.dei.unipd.it/

<Filippo Campagnaro> <campagn1@dei.unipd.it> 2

DESERT structure
Architecture of the DESERT software stack and

modules and addons organization

NS-MIRACLE inheritance

• DESERT inherits the modular structure of NS-

MIRACLE

• A general Module is implemented, along with

most basic layers (MMac, MPhy), inheriting from

this Module
• Before delving into development, check for

basic functionalities: they could be already

implemented

<Filippo Campagnaro> <campagn1@dei.unipd.it> 3

Folders organization

DESERT, as it is downloaded from the main repo, is

organized in the following folders

4

DESERT_AddonsDESERT_Framework

packer_[] ...DESERT Installer

physical data_link ...

<Filippo Campagnaro> <campagn1@dei.unipd.it>

Folders organization

• Once compiled, DESERT will create another

folder named DESERT_buildCopy_LOCAL at the

root of the DESERT repo

• This folder contains the compiled elements and

the generated Makefiles: from here it is possible

to compile a single module

5

DESERT_Framework DESERT_Addons
DESERT_buildCopy

_LOCAL

Sources and

configuration for

compilation

Sources and

configuration for the

addons

Compiled binaries

and configured

Makefiles

<Filippo Campagnaro> <campagn1@dei.unipd.it>

<Filippo Campagnaro> <campagn1@dei.unipd.it> 6

DESERT Addons
Features that do not fit in the core DESERT

structure

What are Addons?

• An addon is a module that does not fit into the

core DESERT structure

• an addon is an external autotools project that

depends on DESERT, NS-MIRACLE and,

possibly, WOSS

• we need to create the addon internal

Makefile.am and a dedicated configure.ac
with m4 folder to resolve the dependencies

• we don’t need to modify the DESERT top-level

Makefile.am nor configure.ac

<Filippo Campagnaro> <campagn1@dei.unipd.it> 7

Addon-module relationship

• A module will depend on some other modules or

classes of DESERT and will be compiled with

each DESERT installation

• An addon relies on some existing module or

classes, too, but its installation can be skipped, if

not needed

• for example, a common case is that of an addon

defining a required new packer for a protocol

• during installation, DESERT will ask you which addons

you want to install

8

Where addons live

• The space where addons live is the

DESERT_Addons folder, seen previously

• At the top-level of DESERT folders hierarchy

<Filippo Campagnaro> <campagn1@dei.unipd.it> 9

DESERT_Framework DESERT_Addons
DESERT_buildCopy

_LOCAL

Sources and

configuration for

compilation

Sources and

configuration for the

addons

Compiled binaries

and configured

Makefiles

Basic addon structure

• Inside the DESERT_Addons folder, create your

addon folder, say cool-addon

• Create, inside this folder, the basics files for a

properly C++ module: cool-addon.h and cool-
addon.cpp

• Create also the initlib.cpp file, as for the

module

<Filippo Campagnaro> <campagn1@dei.unipd.it> 10

DESERT_Addons

packer_[] uwrov cool-addon

- cool-addon.h

- cool-addon.cpp

- initlib.cpp

Additional files

• To make the addon compilable and complete we

need to add few more files

• a Makefile.am

• an initialization file for the Tcl: cool-addon-init.tcl

• the autogen.sh script

• The initlib.cpp file

• a configure.ac config file

• the m4 folder

These files will be explained in the next slides

<Filippo Campagnaro> <campagn1@dei.unipd.it> 11

The files for autotools

• The Makefile.am can be taken from another

addon or module and modified according to your

addon needs, similarly to the module

• For the configure.ac we follow a more

structured process

• We take one from another addon and copy into our

folder

• Modify the AC_INIT with the name of your addon:

AC_INIT(cool-addon, 1.0.0)

• In case of WOSS, it is better to take the configure.ac
from another WOSS-based addon

<Filippo Campagnaro> <campagn1@dei.unipd.it> 12

The initlib

• For the initlib.cpp file, we proceed as with a

module

<Filippo Campagnaro> <campagn1@dei.unipd.it> 13

#include <tclcl.h>

extern EmbeddedTcl CoolAddonTclCode;

extern "C" int
Cooladdon_Init()
{

CoolAddonTclCode.load();
return 0;

}

The Tcl initialization script

• To get rid of the Tcl compiler warnings is useful

to have a Tcl variable initialization script:

cool-addon-init.tcl

• Add all the variables that you have binded in your

addon class

<Filippo Campagnaro> <campagn1@dei.unipd.it> 14

UW/PHY/CoolAddon set SN_Bits 32
UW/PHY/CoolAddon set err_Bits 0
UW/PHY/CoolAddon set Modulation_Bits 0
UW/PHY/CoolAddon set Traffic_Type_Bits 0
UW/PHY/CoolAddon set debug_ 0

The autogen script

• The autogen.sh file is needed to compile your

addon

• copy an autogen.sh from another addon: it is the

fastest and safest way

• it does not need further modification

<Filippo Campagnaro> <campagn1@dei.unipd.it> 15

The m4 folder

• It is easier to copy an m4 folder from another

addon: it contains the desert.m4 file

• we need to modify it, specifying the dependencies

we need for our addon

• list in dir and in lib the directories and libraries your

addon uses

<Filippo Campagnaro> <campagn1@dei.unipd.it> 16

for dir in \
physical/uw-al \
network/uwip \
transport/uwudp \
application/uwcbr

do

for lib in \
uwal \
uwip \
uwudp \
uwcbr

do

Make DESERT aware

To have our addon visible during DESERT

installation, so that the Makefile installation flags are

setup by the DESERT installer, we modify an

installation script: DESERT_Framework/.addon.list

We just need to add the name (cool-addon) of the

folder to the list

17

Set up and ready

These are the basic steps needed to create a new

working addon in DESERT.

After you laid out these basic building blocks, go on

with an installation of the entire DESERT and mark

the new addon for installation: this will allow the

creation of all the files needed in compilation.

After this step, you can reach

DESERT_buildCopy_LOCAL/.buildHost/DESERT_ADDON/cool-addon

and recompile the single addon, when needed.

18

<Filippo Campagnaro> <campagn1@dei.unipd.it> 19

Creating a new header
How to define and implement a new header for

your packets

Headers

DESERT is sending packets to-and-fro. Packets

have headers. Headers are powerful and critical

tools for managing communications networks.

20

The header structure

A header in DESERT can be defined as one prefers

through a class or a struct: quite always, a struct is

enough

<Filippo Campagnaro> <campagn1@dei.unipd.it> 21

#include <packet.h>

typedef struct hdr_uwmyprotocol
{
uint8_t param1_; /**< Parameter used by the protocol */

static int offset_; /**< Required by the PacketHeaderManager */

uint8_t getParam(){return param1_;}
...

} hdr_uwmyprotocol_instance;

myproto-hdr.h

The offset field [1]

The offset field, along with its getter method, is

necessary for the header manager so it knows how

many bits to skip to reach the correct header

22

#include <packet.h>

typedef struct hdr_uwmyprotocol
{

...
inline static struct hdr_uwmyprotocol *
access(const Packet *p)
{

return (struct hdr_uwmyprotocol *) p->access(offset_);
}

...
} hdr_uwmyprotocol_instance; myproto-hdr.h

The offset field [2]

This steps are necessary to allow easy integration with preexisting

structures: now every piece of DESERT will know your new header

23

#include <tclcl.h>
#include <myproto-hdr.h>

static class MyProtoHeaderClass : public PacketHeaderClass
{
public:

MyProtoHeaderClass()
: PacketHeaderClass("PacketHeader/MYPROTO",

sizeof(hdr_uwmyprotocol))
{

this->bind();
bind_offset(&hdr_uwmyprotocol::offset_);

}
}

initlib.cpp OR myproto.cpp

Inherits from

PacketHeaderClass

Here the size of

your header is set

and binded with

offset

The header type

Now what is left to do is to define the type, at the

beginning of the header .h file

• A type for each new header defined

24

extern packet_t MY_PACKET_TYPE;

• these header files are usually put in the same folder

as the module

• our new header will be linked al visible throughout ns2

(and, so, DESERT)

Access macro

It is requested also to define the function (via

macros) that allows to access the various fields of

the new header

25

#define HDR_UWMYPROTOCOL(p) (hdr_uwmyprotocol::access(p))

to be put at the beginning of the header file, along

with the pre-processor directives

myproto-hdr.h

Putting everything together

• After having declared and defined the header

struct, implementing everything that is needed

• declare your new packet type (extern packet_t)

• define the access macros

• define fields and methods of the header

• link with PacketHeaderClass and bind offset

Then it is possible to use the new header

26

hdr_uwmyprotocol *myh = HDR_UWMYPROTOCOL(p);

uint8_t param = myh->getParam();
myh->param1 = calcParam();

Summarizing

27

#define HDR_UWMYPROTOCOL(p) (hdr_uwmyprotocol::access(p))

extern packet_t MY_PACKET_TYPE;

typedef struct hdr_uwmyprotocol
{

/** rememeber to manage the offset_ field */
}

static class MyProtoHeaderClass : public PacketHeaderClass
{
/** remember to manage inheritance from PacketHeaderClass*/

}

myproto-hdr.h

initlib.cpp

	Slide 1: Development of a DESERT Addon and packet header
	Slide 2
	Slide 3: NS-MIRACLE inheritance
	Slide 4: Folders organization
	Slide 5: Folders organization
	Slide 6
	Slide 7: What are Addons?
	Slide 8: Addon-module relationship
	Slide 9: Where addons live
	Slide 10: Basic addon structure
	Slide 11: Additional files
	Slide 12: The files for autotools
	Slide 13: The initlib
	Slide 14: The Tcl initialization script
	Slide 15: The autogen script
	Slide 16: The m4 folder
	Slide 17: Make DESERT aware
	Slide 18: Set up and ready
	Slide 19
	Slide 20: Headers
	Slide 21: The header structure
	Slide 22: The offset field [1]
	Slide 23: The offset field [2]
	Slide 24: The header type
	Slide 25: Access macro
	Slide 26: Putting everything together
	Slide 27: Summarizing

