Summarizing Performance Data
Confidence Intervals

\ Important
Easy to Difficult
Warning: some mathematical content

Slide set based on Jean-Yves Leboudec’s teaching material, see http://perfeval.epfl.ch/
with changes and additions by Michele Zorzi



What is Performance Evaluation ?

B Characterizing quantitatively the service provided by a system
(e.g., computer or communication)

» Throughput, delay, energy consumption, memory, resources, ...

B Purpose(s) of performance evaluation
» Compare competitive solutions
» Provide dimensioning guidelines
» Test design in realistic conditions
» Identify performance problems and study behaviors and trends

B Tools for PE: analysis, simulation, experimentation
B Importance of carefully defining load, metrics and goals
B Importance of understanding factors and patterns



1 Summarizing Performance Data

B How do you quantify:
» Central value of the data (often the best estimate)
» Dispersion (accuracy of the estimate)
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EXAMPLE 2.1: COMPARISON OF Two OPTIONS. An operating system vendor claims
that the new version of the database management code significantly improves the
performance. We measured the execution times of a series of commonly used pro-
grams with both options. The data are displayed in Figure 2.1. The raw displays and

B Note: the load patternis the same in the two cases (paired experiment)



is one answer (empirical pdf)
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ECDFs allow easy comparison

Comparing Data Sets is easily done with their empirical cumulative distribution functions
(ECDFs). The ECDF of a data set x4, ..., r,, is the function F' defined by

1 T
F(z) = — D 1p<a (2.1)
i=1

so that F'(x) is the proportion of data samples that do not exceed x. On Figure 2.2 we see that the
new data set clearly outperforms the old one.
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Summarized Measures

B Median, Quantiles

» Median  Ifn is odd. the median is Tzt clse 3(z(3) + T(3+1)
» Quartiles
» P-quantiles (see http://www.stat.wisc.edu/~wardrop/courses/chap12.pdf)

B (Sample) Mean and standard deviation (computed from data)

» Mean 1 o
m = ;Zizl Ly

» Standard deviation

2 =15" (2, -m)Pors® = 3" (2 —m)

» What is the interpretation of standard deviation ?

» A:if data is normally distributed, with 95% probability, a new data sample lies in

the lnterval m :IZ 1 ] 965 Theorem 8.3. Chebyshev Inequality.  For an arbitrary random variable

» Also ChebysheV'S inequa]ity Y and constant ¢ > 0,
PlY —py| 2] <

Var Y]

c2




Example

quantiles mean and standard deviation
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Figure 2.3: Box Plots for the data for Example 2.1. Left: standard box plot commonly used by statisticians
showing median (notch) and quartiles (top and bottom of boxes); “dispersion” is an ad-hoc measure, defined
here as 1.5 times the inter-quartile distance; the notch width shows the confidence interval for the median.
Right: same, overlaid with quantities commonly used in signal processing: mean, confidence interval for
the mean (= mean =+ 1.960/./n, where o is the standard deviation and n is the number of samples) and
prediction interval (= mean =+ 1.96¢0).
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Coefficient of Variation Summarizes Variability

B Scale free (invariant to change of scale)
B Second order

S
CoV = —
m

where m 1s the mean and s the standard deviation

B For any data set with n samples, we have

0<CoV<vn—1

B Does not exist if infinite variance (heavy tailed r.v.)
B Exponential distribution: CoV =1

B What does CoV =0 mean?
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Jain’s Fairness Index is an Alternative to CoV

B Quantifies fairness of x;
n 2
JFI (Zi 1 T?)
(m, m) n ZE 1 1',
| B Ranges from
» 1:all x; equal

0 » 1/n: maximum unfairness

B Fairness and variability are
two sides of the same coin
1
1 4+ CoV?

- Jain’s fairness index is cos? 6.

JFI =

11



2. Confidence Intervals

B Any measured performance metric is a random variable, and is
therefore only an estimate of the real value

» We need to quantify the reliability of such estimate

» The accuracy of an estimate is measured with the confidence
intervals

» There is a confidence interval for every summarized quantity

B Confidence interval is defined by a confidence level (e.g., 95%)
» It is an interval which contains the true value with that probability

B No simulation result is meaningful without confidence

12



Confidence Intervals for Mean of Difference

B Continuation of the previous example

B Meanreduction=  26.1 + 10.2
» Good gain, but large uncertainty

» (is outside the confidence intervals folymean and for median: we can conclude
that there is a positive gain

B Confidence interval for median
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Confidence intervals in performance results
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Computing Confidence Intervals

DEFINITION 2.2.1. A4 confidence interval af level ~ for the fixed but unknown parameter m is an
mterval (u(Xq,.... X,,).v(Xy1, .., X,,)) such that

Pu(Xq, ... X)) <m<o(Xy. ... X,)) >y (2.2)

In other words, the interval is constructed from the data. such that with at least 95 probability (for
v = 0.95) the true value of n falls 1 1t. Note that it is the confidence interval that is random,
not the unknown parameter .

B How to compute the confidence intervals depends on the quantity being
studied and on the assumptions we can make about the data

B [tis fairly simple in general if we can assume that the data comes from an
Independent and Identically Distributed (iid) model

» We will discuss the case of dependent data later
B Also, we assume that the data follows a well-defined (though unknown) F(x)
B Note that the confidence interval is not unique in general
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Cl for median (or percentiles)

The simplest of all. Median is defined as middle data point (average of the
two middle points if the data set contains an even number of data points)

Robust: always true provided iid assumption holds (critical)

THEOREM 2.2.1 (Confidence Interval for Median and Other Quantiles). Let X;. .... X,, be n iid
random variables, with a common CDF F'(). Assume that F'() has a density, and for 0 < p < 1 let

my be a p-quantile of F(), i.e. F'(my) = p.
Let X1y < X9y < ... < X(,,) be the order statistic, i.e. the set of values of X; sorted in increasing
order. Let B, , be the CDF of the binomial distribution with n repetitions and probability of success

p. A confidence interval for m,, at level v is

Xy, Xl

where j and k satisfy
Buplk—1) = Bupli — 1) 2 7

See the tables in Section A for practical values. For large n, we can use the approximation

i = |np—nvnp(l—p)]

ko~ [np+nynp(l—p)|+1

where 1) is defined by Ny 1(n) = I—Jg’t (e.g. n = 1.96 for v = 0.95).
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Cl for mean and Standard Deviation

B This is another, most commonly used method
B I[trefersto mean and variance instead of percentiles
B [trequires some assumptions to hold, in addition to iid

» Typically, gaussian data or finite variance and large n
» may be misleading if they do not hold, need to check

B Unlike for median and quantiles, there is no exact theorem in this case, but
the results are asymptotic and/or heuristic.

17



Cl for mean, asymptotic case

B If centrallimit theorem holds
(in practice: n is large and distribution is not “wild”)

THEOREM 2.2.2. Let X;. ..., X,, be n iid random variables, the common distribution of which is
assumed to have well defined mean yi and a variance o*. Let ji,, and s> b)

2
'

1 Tt
o= =3 X, 2.19
fi n; (2.19)
1 T
9 Y
2 = =SN(X,— i, 2.20
St n;( fin) (2.20)

The distribution of \/ﬁ% converges to the normal distribution N 1 when n — +o00. An approx-
imate confidence interval for the mean at level ~ is

-~ Sn
il & T?ﬁ (2.21)

where 1 is the 1—;*— quantile of the normal distribution Ny 4, i.e Ny1(n) = 1—;7- For example,
n = 1.96 for v~ = 0.95 and n = 2.58 for v = 0.99.
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Gaussian quantiles




Example

Bn=100;95% confidence level
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We test a system 10’000 times for failures
and find 200 failures: give a 95% confidence
interval for the failure probability p.
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We test a system 10’000 times for failures
and find 200 failures: give a 95% confidence
interval for the failure probability p.

Let X; = 0 or 1 (failure / success); E(X;) = p

So we are estimating the mean. The asymptotic theory
applies (no heavy tail)

—002
z Xt - =—z X; — Uf = Un — U,
i=1.n
_,un(1 #n)—002><098~002
=/0.02 ~ 0.14

Confidence Interval: u,, + r’sn = 0.02 + 0.003 at level 0.95
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Confidence Interval for Success Probability

Problem statement: want to estimate proba of failure; observe n outcomes;
no failure; confidence interval ?

Example: we test a system 10 times for failures and find 0 failures: give a
95% confidence interval for the failure probability p.

[s this a confidence interval for the mean ? (explain why)
The general theory does not give good results when mean is very small
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THEOREM 2.2.4. [43, p. 110] Assume we observe z successes out of n independent experiments.
A confidence interval at level 7y for the success probability p is [L(2); U(z)] with

L(0)=0
L(z) = ¢nz (F2), 2=1,..,n (2.26)
U(z)=1— L(n — 2)

where ¢y, () is defined forn = 2,3, ..., z € {0,1,....n} and a € (0;1) by

) — —mf
{ Pno(Q) = (2.27)
ny = 2(3’ -+ 1) Ny = 2(?’1 — 2’)3 l—a= En,ﬂz(f)

(Fr, m,() is the CDF of the Fisher distribution with ni,ns degrees of freedom). In particular, the
confidence interval for p when we observe z = 0 successes is [0; po(n)| with

po(n) =1— (%)n _ 1103(12 ) —I—O(l) for large n (2.28)

Whenever z > 6 and n — z > 6, the normal approximation

L(z)~2_-1,/x(1—2
()~ 2 ”‘; (- 7) (2.29)

can be used instead, with Ny 1(1) =

[y
m|—|—
]
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For v = 0.95, Eq.(2.28) gives py(n) &~ 222 and this is accurate with less than 10% relative erro
for n > 20 already.

1
I—7v\" 1 2 1
po(n) =1— (Tﬂ}) = log (m) +0 (E) for large n

Check on the web: “rule of three”

Also read the article at http: //www.pmean.com/01/zeroevents.html

EXAMPLE: SENSOR LOSS RATIO. We measure environmental data with a sensor net-
work. There is reliable error detection, i.e. there is a coding system which declares
whether a measurement is correct or not. In a calibration experiment with 10 indepen-
dent replications, the system declares that all measurements are correct. What can
we say about the probability p of finding an incorrect measurement ?

Apply Eq.(2.28): we can say, with 95% confidence, that p < 30.8%.



Bootstrap Percentile Method

B A heuristic thatis robust (requires only iid assumption)
» But be careful with heavy tail, see next

B buttends to underestimate CI
B Simple to implement with a computer

B Idea: use the empirical distribution in place of the theoretical (unknown)
distribution

B For example, with confidence level = 95%:
» the data setis S={=T1: e In}

» Dor=1tor=999

» (replay experiment) Draw n bootstrap replicates with replacementfrom S
» Compute statistic T, as a function of these replicates

» Bootstrap percentile estimate is (T(,s), T(g75))

B See Ross, pp. 126-133
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Confidence Interval for statistical indices

B Use of bootstrap if data is iid

interval (in this context #(¥) is called a sfatistic). For example, if the statistic of interest is the
Lorenz curve gap, then by Section 2.1.3:

o P |

c R=2rg/(1l=7)] =1 > For example o = 25, v = 0.95, R = 999
cforr=1:Rdo
draw n numbers with replacement from the list (21, ..., x,,) and call them X7, ..., X
let 7" = (X7)
end for
('T(l), T(R)) = sort (Tl, TR)
. Prediction interval is [T,y ; T(R41-r0)]

N D e w e

B Try to prove it (hint: start from the proof of Theorem 2.4.1 - will see it later)
B The method can be used for any choice of the statistic
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Take Home Message

Confidence interval for median (or other quantiles) is easy to get from the
Binomial distribution

» Requires iid
» No other assumption

Confidence interval for the mean
» Requiresiid
» And

» Either if data sample is normal and n is small
» Or data sample is not wild and n is large enough

The bootstrap is more robust and more general but is more than a simple
formula to apply

Confidence interval for success probability requires special attention when
success or failure is rare

We need to verify the assumptions

28



3. The Independence Assumption

B Confidence Intervals require that we can assume that the data comes from
an iid model

Independent Identically Distributed

B How do I know if this is true ?
» Controlled experiments: draw factors randomly with replacement
» Simulation: independent replications (with random seeds)

» Else: we do not know - in some cases we will have methods for time series

29



Example

140 —h] .2 - 4 . B Pretend data is iid: CI
for mean is [69; 69.8]

B Is this biased ?

B How to check for
D correlation? Look at the
ACF (see black curve)

.

D .
D SICTRE TGP )
- i=1
(n — 1)sysy
© ' © !
O D000 10 > (i — )i =)
i=1
data ACF /Z(xf — )2 Z (j/z' _j—})z
i=1 i=1
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B Lag plots show correlation between
shifted versions of the same data sequence

(c) Autocorrelation

Lag plot
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(d) Lag Plots
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What happens if data is not iid ?

B If data is positively correlated
» Neighboring values look similar
» Frequent in measurements

» Clis underestimated: thereis less information in the data than one
thinks

B Possible solution:

» Subsample the data so that the correlation is broken
» Periodic vs. Random sampling
» data looks more similar to iid but there is less data
» For certain data (called long-range dependent) this does not work

» Try to model the correlation explicitly (e.g., see Example 2.4 in the book)
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Figure 2.9: Execution times for n = 7632 requests (top left) and autocorrelation function (bottom left), and
for the data sub-sampled with probability p = 1/2to 1/27 = 1/128. The data appears stationary and roughly
normal so the auto-correlation function can be used to test independence. The original data is positively
correlated, but the sub-sampled data looses correlation when the sampling probability is p = 1/64. The
turning point test for the subsampled data with p = 1/64 has a p-value of 0.52648, thus at confidence
level 0.95 we accept the null hypothesis, namely, the data is iid. The sub-sampled data has 116 points,
and the confidence interval obtained from this for the median of the sub-sampled data is [66.7, 75.2] (using
Theorem 2.2.1). Compare with the confidence interval that would be obtained if we would (wrongly) assume
the data to be iid : [69.0, 69.8]. The iid assumption underestimates the confidence interval because the data

Is positively correlated.
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Further discussion

B Monte-Carlo vs. Event-driven simulations
» Effect of correlation
» Whatis a run in this case?
» How to compute CI?

B When to stop a simulation?
» Rigorous approach from theory
» Some empirical techniques

B How to improve CI?
» Run more samples: obvious but not always possible
» Variance reduction techniques: tricks to improve accuracy
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