
signet.dei.unipd.it

WOSS – World Ocean
Simulation System – c++ classes

Federico Guerra, Filippo Campagnaro, Michele
Zorzi

woss@guerra-tlc.com, filippo.campagnaro@unipd.it

Padova (Italy)
30th of January – 3rd of February 2023

http://signet.dei.unipd.it/

WOSS – the foundation classes

• woss::Pdouble class that stores a double value and its
precision which are used for arithmetic and comparison
computations.
• It is extensively used throughout the whole framework and its

containers.
• By lowering the precision of specific key components (SSP, databases

containers etc) it is possible to dynamically perform a sub sampling of the
data in use hence simplifying the complexity of the simulation.

• woss::Pressure class stores an acoustic pressure value for
attenuation purposes represented by complex<double>. It
also provides full arithmetic capability and an attenuation
coherency check.

• woss::TimeArr class represents the channel power delay
profile. Its associates a time delay value (double) to a
woss::Pressure value. is It also provides APIs for arithmetic
and pressure manipulations.

2

WOSS – the foundation classes

• woss::Coord class that represents a geographical
coordinate as a pair of latitude and longitude. It has
many APIs in order to compute bearing, distance,
etc…

• woss::CoordZ class that extends woss::Coord
and that represents a geographical coordinate as a
tuplet of:
• latitude

• longitude

• depth (>= 0 under the sea)

It has all the required APIs in order to compute bearing,
distance(s), conversion to/from cartesian coordinates, spherical
coordinates etc…

3

WOSS – the foundation classes

• woss::SSP class that stores information related to a
sound speed profile.
• For any given depth (woss::Pdouble) it can associate a

• temperature [C°]

• pressure [bar]

• salinity [psu]

• sound speed [m/s].

• It offers capabilities for:
• arithmetic computations

• sound speed calculations (Chen and Millero, TEO-10 etc),

• depth to pressure conversions (and vice versa) with coordinates

corrections

• sound speed profile transformations:
• Truncation, sub sampling, interpolation

• Depth extension at constant temperature and salinity

• random perturbation, the latter is used by the framework when
multiple run for each channel simulation are configured.

4

WOSS – the foundation classes

• woss::Sediment class provides an interface

for creating and manipulating surficial geoacoustic

parameters as:

• compressional wave velocity [m/s]

• shear wave velocity [m/s]

• sediment density [g/cm^3]

• compressional wave attenuation [dB/wavelength]

• shear wave attenuation [dB/wavelength]

5

WOSS – the foundation classes

• woss::Altimetry class implements sea surface

wave spectra. Currently there are two models:

• flat model, which represents a flat sea surface

• woss::AltimBretschneider class that implements

the Bretschneider (ITTC two parameters) wave spectrum*.

• Its input parameters are:

• H, characteristic wave height [m]

• T, the wave period [s]

6

• Additional parameters which are

automatically set by the framework:

• range [m]

• range steps

• scenario depth [m]

WOSS – the foundation classes

• woss::TimeReference class that allows WOSS to

import a simulator time reference from an external
source, usually a network simulator.

• woss::Time class that provides date

representation and its arithmetic APIs.

• woss::RandomGenerator class that allows WOSS

to import random number generator model from an

external source (network simulator or else).

• woss::Location base class that provides APIs for

a mobility model based on geographical coordinates
(woss::CoordZ).

7

WOSS – the foundation classes
• woss::Transducer class that

allows accurate calculation of:

• power consumption

• Sound Pressure Level (SPL) output

• vertical beam pattern

• The model is based on the parameters usually

provided by constructor data sheets as:

• resonance frequency [hz]

• 3dB bandwith around the resonance frequency [hz]

• max input power [W]

• duty cycle [0-1]

• conductance [uS]

• Transmitting Voltage Response (TVR) [dB re uPa/V

@ 1m]

• Open Circuit Voltage (OCV) [dB re 1V/uPa]

• Vertical and horizontal beam pattern

8

WOSS – the foundation classes

• Transducers can be imported into simulation, and
their beam pattern can be rotated or modified with an
additive and a multiplicative constant to better suit
the user needs.

• woss::Location supports simulation of dynamic
orientation of the associated transducer to better
simulate how AUV movements impact on
transmission.

• For more information on the woss::Transducer
and current model list please refer to
http://telecom.dei.unipd.it/ns/woss/doxygen/transducer
_page.html

9

http://telecom.dei.unipd.it/ns/woss/doxygen/transducer_page.html
http://telecom.dei.unipd.it/ns/woss/doxygen/transducer_page.html

WOSS – the foundation classes

• woss::TransducerHandler class that

• imports woss::Transducer models from ASCII file

• associates them to a string into its internal database.

• provides access of the imported models to the whole
framework.

10

WOSS – the foundation classes

• woss::DefinitionsHandler singleton class is
configured at run-time. It instantiates every foundation
class objects for the whole framework.

• The user therefore can define its own classes derived
from:
• woss::SSP

• woss::Sediment

• woss::Pressure

• woss::Altimetry

• woss::Transducer

• woss::TimeRef

• woss::RandomGenerator

and plug them in at configuration phase, before the simulation
begins.

11

WOSS – the database classes

• Each database is a woss::WossDb object. This class

separates the database access technology (NetCDF, ASCII,

CSV, etc) from the actual operation on the data, thus allowing

maximum code reuse.

• Each woss::WossDb object is instantiated by

woss::WossDbCreator object. The latter has the task of

properly create and initialize the returned instance.

• The woss::WossDbManager has the task of centralizing the

access to all the involved databases:
• Bathymetry database – woss::WossBathymetryDb

• SSP database – woss::WossSSPDb

• Sediment database – woss::WossSedimentDb

• woss::TimeArr simulation results (optional) –
woss::WossResTimeArrDb

• woss::Pressure simulation results (optional) –
woss::WossResPressDb

12

WOSS – the database classes

• The woss::WossDbManager has APIs for
configuring run-time made environmental databases.

• Each environmental data (bathymetry, altimetry, SSP,
sediment) has a set of APIs for setting, importing from
file, retrieving and erasing a custom value.

• Each custom data is stored into a RAM container, that
has the following key tuple:
• tx coordinates: the data can be valid for a specific tx

coordinate or for all of them if a special value is given.

• Once the first key is set, the bearing is then considered.
Again, a special value can be given in order to be valid for
all bearings.

• Range from the tx coordinates. Also here a special value
exists that will consider the data valid for all ranges.

13

WOSS – the database classes

• The getter APIs will then be used by the objects

that run the channel simulator.

• The APIs will:

• search into the custom databases, by getting the data

that is closer to the requested coordinates.

• If the custom databases are not present, then the data

will be retrieved from the ordinary databases

14

WOSS – the database classes

• Custom data databases examples
bool setCustomBathymetry(Bathymetry* const bathymetry,

const Coord& tx_coord = CCBathymetry::DB_CDATA_ALL_OUTER_KEYS,

double bearing CCBathymetry::DB_CDATA_ALL_MEDIUM_KEYS,

double range = CCBathymetry::DB_CDATA_ALL_INNER_KEYS);

15

woss_db_manager->

setCustomBathymetry(90);

The key tuple is not given, hence it will take

the default special values for all keys. Meaning

that all simulations will have a flat bathymetry

of 90 meters;

woss_db_manager->

setCustomBathymetry(400, tx, pi/2.0, 1);

woss_db_manager->

setCustomBathymetry(450, tx, pi/2.0, 10);

woss_db_manager->

setCustomBathymetry(500, tx, pi/2.0, 40);

woss_db_manager->

setCustomBathymetry(450, tx, pi/2.0, 100);

We have drawed a straight bathymetry line

with four points (linearly interpolated):

Starting from tx coordinates, bearing 90°

90° range

Bathymetry
400m

450m

500m

WOSS – the databases

• GEBCO NetCDF database is distributed by GEBCO. All data formats up to 2022 are

supported in WOSS.

• The WOA SSP NetCDF databases contain monthly, seasonal and annual average of
sound speed profiles, calculated with the TEOS-10 exact formula, and based on the
depth, temperature and salinity provided by the World Ocean Atlas. The available
resolution is 1° x 1°. Data are provided at standard depths [m]

• 0, 10, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1100,
1200, 1300, 1400, 1500, 1750, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500.

• The NetCDF files have been generated with NetCDF or NetCDF4 library.

• Each NetCDF file has the following dimensions:

• latitude

• longitude

• Depth

• Each NetCDF file has the following variables description:

• float ssp(latitude, longitude, depth) ; //ssp:units = "m/s" ;

• float latitude(latitude) ; // latitude:units = "decimal degrees" ;

• float longitude(longitude) // longitude:units = "decimal degrees" ;

• short depth(depth) ; // depth:units = "m" ;

16

WOSS – the databases DECK41

• The DECK41 sediment database contains
Sediment data taken from the NOAA’s DECK41
data set.

• The DECK41 collection contains surficial
sediment descriptions for over 36,000 seafloor
samples worldwide. Data include collecting
source, ship, cruise, sample id, latitude/longitude,
date of collection, water depth, sampling device,
dominant lithology, secondary lithology, and a
brief description of the surficial sediment at the
location.

17

WOSS – the databases DECK41

• The NetCDF files index the dominant and secondary
lithology for geoacoustical purposes. These values are
represented by an unsigned integer number between 0 and
11:
1. Coarser than sand
2. Sand
3. Silt
4. Clay
5. Ooze
6. Mud
7. Rocks, Rocks fragment
8. Organic material (shell, peat, wood, coral, etc.)
9. Nodules, slab or concretions (manganese, phosphate, iron,

glauconite)
10.Hard bottom
11.NO_VALUE

18

WOSS – the databases DECK41

• The data has been
organized in three NetCDF
databases:
• The first with the exact

coordinates of the data set.

• A second one with data
averaged oven marsden
coordinates: marsden
square + marsden one
degree square.

• A third one with data
averaged over a whole
marsden square.

19

WOSS – the main classes

• The woss::Woss class provides interface for:

• configuring, running and reading results of any channel simulator.

• Averaging and output results over any number of run.

• Each woss::Woss object is instantiated and configured
via a woss::WossCreator object

• The woss::WossManager class is the entrypoint of the
framework, and offers:
• The ability of carefully creating and use woss::Woss instances in

a multi-threaded fashion in order to minimize CPU load

• The ability of planning a strategy for time-varying and/or multi-
frequency channel simulations;

• The ability of storing and retrieving results from a result database,
thus saving CPU time when possibile.

20

WOSS – the main classes

• The woss::WossController class centralizes

and manages all the connections between all the

woss objects.

• It needs to be configured with pointers to all the

main objects, namely:

• (optional) each environmental
woss::WossDbCreator*

• woss::WossCreator*

• woss::WossManager*

• woss::WossDbManager*

• woss::TransducerHandler*

21

WOSS – a functional overview

22

• The init phase can be summarized with the following steps:
• The singleton woss::DefHandler must be configured with all the founding class

object prototypes

• The woss::WossController should be instantiated

• Each optional woss::WossDbCreator should be instantiated, configured and plugged
into the woss::WossController

• The mandatory woss::WossCreator, woss::WossDbManager and
woss::WossManager should be instantiated, configured and plugged into the
woss::WossController

• woss::WossController::initialize() function should be called

WOSS – a functional overview

23

WOSS – time evolution

Time evolution is supported by the following classes:

• woss::Woss - controls its evolution by querying a

new woss::SSP for the new time evolution quantum

and by asking its woss::Altimetry to evolve.

• woss::Altimetry - performs an evolution of its

mathematical model.

• woss::AltimBretschneider - generates a new

realization of its statistical process.

Each class supports an independent time evolution

quantum measured in seconds and feature on/off flag

24

WOSS – time evolution

The framework controls the time evolution through:

• woss::WossManager – supports queries for a specific
woss::Time object or for a specific number of seconds
after the start of the simulation (woss::SimTime)

• woss::WossCreator - for each pair of tx, rx
woss::Location the user can configure a specific
woss::SimTime object

• woss::WossDbManager, woss::WossDb - all dbs
support queries for a specific woss::Time

• woss::WossDbManager - A template for custom db
data can be used for time dependent custom SSP data.
The returned woss::SSP is a linear interpolation of two
SSPs found at the closest woss::Time values.

25

WOSS – ns-miracle and DESERT
integration

The optional woss_phy shared library is specific for
ns-miracle and DESERT integration and it
introduces:

• a new packet header struct hdr_woss

• WossChannelModule, WossMPropagation and
WossMInterferenceMIV classes for channel
computations and interference calculations

• propagation effects are considered constant over
the bandwidth and the duration of the packet;

• the channel simulator is run at the geometric
mean frequency.

26

WOSS – ns-miracle and DESERT
integration

The library also offers:

• a ChannelEstimator, ChEstimatorPlugIn, ClM
sgChannelEstimation for channel estimation
purposes used at PHY layer

• A WossPosition and for waypoint mobility
with WossWpPosition

• It provides the WossMPhyBpsk class for BPSK
modulation with power control based on channel
estimations and transducer model.

• It provides TCL classes, bound variables and
methods in order to properly write and run TCL scripts

27

References

• Paolo Casari, Cristiano Tapparello, Federico Guerra,
Federico Favaro, Ivano Calabrese, Giovanni Toso, Saiful
Azad, Riccardo Masiero, Michele Zorzi, "Open-source
Suites for the Underwater Networking Community: WOSS
and DESERT Underwater", IEEE Network SI “Open
source for networking,” 2014

• Federico Guerra, Paolo Casari, Michele Zorzi, “World
Ocean Simulation System (WOSS): a simulation tool for
underwater networks with realistic propagation modeling”,
WUWNet 2009

• Nicola Baldo, Marco Miozzo, Federico Guerra, Michele
Rossi, Michele Zorzi, "Miracle: The Multi-Interface Cross-
Layer Extension of ns2”, EURASIP Journal on Wireless
Communications and Networking Volume 2010, Article ID
761792, doi:10.1155/2010/761792

28

	Slide 1: WOSS – World Ocean Simulation System – c++ classes
	Slide 2: WOSS – the foundation classes
	Slide 3: WOSS – the foundation classes
	Slide 4: WOSS – the foundation classes
	Slide 5: WOSS – the foundation classes
	Slide 6: WOSS – the foundation classes
	Slide 7: WOSS – the foundation classes
	Slide 8: WOSS – the foundation classes
	Slide 9: WOSS – the foundation classes
	Slide 10: WOSS – the foundation classes
	Slide 11: WOSS – the foundation classes
	Slide 12: WOSS – the database classes
	Slide 13: WOSS – the database classes
	Slide 14: WOSS – the database classes
	Slide 15: WOSS – the database classes
	Slide 16: WOSS – the databases
	Slide 17: WOSS – the databases DECK41
	Slide 18: WOSS – the databases DECK41
	Slide 19: WOSS – the databases DECK41
	Slide 20: WOSS – the main classes
	Slide 21: WOSS – the main classes
	Slide 22: WOSS – a functional overview
	Slide 23: WOSS – a functional overview
	Slide 24: WOSS – time evolution
	Slide 25: WOSS – time evolution
	Slide 26: WOSS – ns-miracle and DESERT integration
	Slide 27: WOSS – ns-miracle and DESERT integration
	Slide 28: References

