```
Lezione 17
Codici Matlab
```

Codici Matlab

```
function l=lagrai(z,x,i)
% Calcola l'i-esimo pol. elementare di Lagrange
9_____
% Inputs z: nodi di interpolazione: x: punto su cui valutare: i: indice del polinomio
% 1: valore del polinomio in x
Y_____
z1=setdiff(z, [z(i)]): 1=prod(x-z1)/prod(z(i)-z1):
end;
function 1 = lagrai_target(z,x,i)
%-----
% Calcola l'i-esimo pol. elementare di Lagrange su un vettore di punti di valutazione
%______
% z = nodi di interpolazione
% x = vettore (colonna!) di punti di valutazione su cui valutare l_i
% i = indice del polinomio
% l = vettore dei valori di l_i sui targets
n = length(z): m = length(x):
1 = prod(repmat(x,1,n-1)-repmat(z([1:i-1,i+1:n]),m,1),2)/...
prod(z(i)-z([1:i-1,i+1:n])); end;
```

Codici Matlab: interpolante in forma di Lagrange

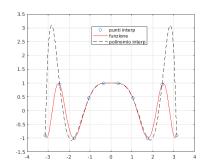
```
clear all; close all;
a=...; b=...; % estremi intervallo interpolazione
n= ...; % grado polinomio
f=0(x)....; % funzione da interpolare
x=linspace(a,b,n); %nodi d'interpolazione equispaziati
z=linspace(a,b,10*n); %nodi di valutazione
y=f(x); %funzione nei nodi d'interpolazione
for i=1:n,
  L(:,i)=lagrai_target(x,z',i);
end
p=L*y'; % polinomio nei punti di valutazione;
plot(x,f(x),'o',z,f(z),'r-',z,p,'b-.'); % plot di confronto
legend('punti interp', 'funzione', 'polinomio interp')
```

```
Lezione 17
```

Esempio concreto

ecco il risultato

```
Se ci mettiamo in [-\pi,\pi] e desideriamo interpolare la funzione f(x)=\cos(x^2) con un polinomio di grado 10. Le modifiche da fare sono a=-pi; b=pi; % estremi intervallo interpolazione n= 10; % grado polinomio f=0(x) \cos(x.^2); %funzione da interpolare
```



−Lezione 17 └─Codici Matlab

Osservazione

Attenzione ai nodi equsipaziati!

Guardando la figura nella precedente slide, si osserva che il polinomio d' interpolazione approssima bene nella parte centrale, male verso vegli gli estremi.

Questo è dovuto all'instabilità dell' interpolazione polinomiale quando i nodi sono equispaziati.

Questo è il fenomeno di Runge