Distributed Systems

a.y. 2023/2024
Distributed Systems:

Time
Time and Clocks

- We need to measure time accurately:
 - At what time an event occurred at a computer?

- Algorithms for clock synchronization are useful for
 - concurrency control based on timestamp ordering
 - authenticity of requests
 - avoiding duplicate updates
There is no global clock in a distributed system, hence no absolute global time
- clock accuracy and synchronisation

Process state and global state
- Are there some states occurring “at the same time”?
What clock properties are required by the Unix *make* program when it uses local files?

What clock properties are required by the Unix *make* program when it uses distributed files?
Clock Synchronization

- When each machine has its own clock, an event that occurred after another event may nevertheless be assigned an earlier time.
Logical time is an alternative
- It focuses on ordering of events
Computation of the mean solar day

A transit of the sun occurs when the sun reaches the highest point of the day.

At the transit of the sun n days later, the earth has rotated fewer than 360°.

Earth on day 0 at the transit of the sun.

Earth on day n at the transit of the sun.
Coordinated Universal Time (UTC)

- International Atomic Time (TAI) is based on very accurate physical clocks (drift rate 10^{-13})
- UTC is an international standard for time keeping
- It is based on atomic time, but occasionally adjusted to astronomical time
- It is broadcast from radio stations on land and satellite (e.g. GPS)
...adjusting physical clock...

- TAI seconds are of constant length, unlike solar seconds. Leap seconds are introduced when necessary to keep in phase with the sun.
Computers with receivers can synchronize their clocks with these timing signals.

Signals from land-based stations are accurate to about 0.1-10 millisecond.

Signals from GPS are accurate to about 1 microsecond.
...clock time and UTC...
• Each computer in a DS has its own internal clock used by local processes to obtain the value of the current time.

• Clocks on different computers may give different times:
 - Computer clocks drift from perfect time and their drift rates differ from one another.
 - **Clock drift rate**: the relative amount that a computer clock differs from a perfect clock.
Even if clocks on all computers in a DS are set to the same time, their clocks will eventually vary quite significantly unless corrections are applied.
A distributed system is defined as a collection \(P \) of \(N \) processes \(p_i \), \(i = 1,2,\ldots N \).

Processors do not share memory.

Each process \(p_i \) has a state \(s_i \) consisting of its variables (which it transforms as it executes).

Processes communicate only by messages (via a network).

Actions of processes:
- *Send*, *Receive*, change their own (internal) state.

Event: the occurrence of a single action that a process carries out as it executes.
Events at a single process p_i can be placed in a total ordering denoted by the relation \rightarrow_i between the events. i.e.

$$e \rightarrow_i e' \text{ if and only if } e \text{ occurs before } e' \text{ at } p_i$$

A history of process p_i is a series of events ordered by \rightarrow_i

$$\text{history}(p_i) = h_i = <e_i^0, e_i^1, e_i^2, ...>$$
Clocks

The computer’s clock (for timestamping events)

- the time on the computer’s hardware clock $H_i(t)$
- The software clock:

\[C_i(t) = \alpha H_i(t) + \beta \]

- $C_i(t)$ is the reading of the software clock

Clock resolution < time interval between successive events
Skew between computer clocks

Skew: the difference between the times on two clocks (at any instant)
- Computer clocks are subject to *clock drift* (they count time at different rates)
- Clock *drift rate*: the difference per unit of time from some ideal reference clock

- Ordinary quartz clocks drift by about 1 sec in 11-12 days. \((10^{-6} \text{ secs/sec})\).
- High precision quartz clocks drift rate is about \(10^{-7}\) or \(10^{-8}\) secs/sec
Synchronizing (physical) clocks

External synchronization

- A computer’s clock C_i is synchronized with an external authoritative time source S, if:
 - $|S(t) - C_i(t)| < D$ for $i = 1, 2, \ldots N$ over an interval I
 - The clocks C_i are accurate to within the bound D.

Internal synchronization

- The clocks of a pair of computers are synchronized with one another so that:
 - $|C_i(t) - C_j(t)| < D$ for $i = 1, 2, \ldots N$ over an interval I
 - The clocks C_i and C_j agree within the bound D.

Internally synchronized clocks are not necessarily externally synchronized, as they may drift collectively.

If the set of processes P is synchronized externally within a bound D, it is also internally synchronized within bound $2D$.
Clock correctness

A hardware clock, H is said to be correct if its drift rate is within a bound $\rho > 0$. (e.g. 10^{-6} secs/sec)

This means that the error in measuring the interval between real times t and t' is bounded:

- $(1 - \rho) (t' - t) \leq H(t') - H(t) \leq (1 + \rho) (t' - t)$

 (where $t' > t$)

Which forbids jumps in time readings of hardware clocks
Weaker condition of monotonicity

- $t' > t \Rightarrow C(t') > C(t)$
- e.g. required by Unix `make`
- can achieve monotonicity with a hardware clock that runs fast by adjusting the values of α ans β

\[C_i(t) = \alpha H_i(t) + \beta \]
- A faulty clock is one that does not obey its correctness condition.
- Crash failure - a clock stops ticking.
- Arbitrary failure - any other failure e.g. jumps in time.

The 'Y2K bug' …
Clock synchronization in a synchronous system

- a synchronous distributed system is one in which:
 - the time to execute each step of a process has known lower and upper bounds
 - each message transmitted over a channel is received within a known bounded time
 - each process has a local clock whose drift rate from real time has a known bound
Internal synchronization

- One process p_1 sends its local time t to process p_2 in a message m,

- p_2 could set its clock to $t + T_{\text{trans}}$ where T_{trans} is the time to transmit m

- T_{trans} is unknown but $\min \leq T_{\text{trans}} \leq \max$
- uncertainty $u = \max - \min$. Set clock to $t + (\max + \min)/2$ then skew $\leq u/2$

In the Internet, we can only say $T_{\text{trans}} = \min + \chi$ where $\chi \geq 0$
Cristian’s algorithm -

- a single time server might fail, so they suggest the use of a group of synchronized servers
- it does not deal with faulty servers
Cristian's Algorithm

Both T_0 and T_1 are measured with the same clock

- Getting the current time from a time server.
Cristian’s method for an asynchronous system

A time server S receives signals from a UTC source.
- Process p requests time at m_r and receives t at m_t.
- p sets its clock to $t + T_{\text{round}}/2$.

T_{round} is the round trip time recorded by p.
Cristian’s method (1989) for an asynchronous system

- **Accuracy** $\pm \left(T_{\text{round}}/2 - \text{min} \right)$:
 - because the earliest time S puts t in message m_t is min after p sent m_r.
 - the latest time was min before m_t arrived at p.
 - the time by S’s clock when m_t arrives is in the range $[t+\text{min}, t + T_{\text{round}} - \text{min}]$.

min is an estimated minimum round trip time.
Berkeley algorithm

- Berkeley algorithm
 - An algorithm for internal synchronization of a group of computers
 - A master polls to collect clock values from the others (slaves)
 - The master uses round trip times to estimate the slaves’ clock values
The Berkeley Algorithm

Time daemon

Network

2:50
3:25
(a)

2:50
3:25
(b)

3:05
3:05
(c)

+5
-20
The Berkeley Algorithm

- The time daemon asks all the other machines for their clock values.
The Berkeley Algorithm

- The machines answer.
The Berkeley Algorithm

- The time daemon tells everyone how to adjust their clock.
- It takes an average (eliminating any above some average round trip time or with faulty clocks)
- It sends the required adjustment to the slaves (better than sending the time which depends on the round trip time)

Measurements
- 15 computers, clock synchronization 20-25 millisecs drift rate $< 2 \times 10^{-5}$
- If master fails, can elect a new master to take over (not in bounded time)
Network Time Protocol (NTP)

- It synchronizes clients to UTC
 - Reliability from redundant paths,
 - scalable,
 - authenticates time sources
Network Time Protocol (NTP)

- Primary servers are connected to UTC sources.
- Secondary servers are synchronized to primary servers.
- Synchronization subnet - lowest level servers in users’ computers.
The synchronization subnet can reconfigure if failures occur, e.g.
- a primary that loses its UTC source can become a secondary
- a secondary that loses its primary can use another primary
NTP - synchronisation of servers

- Modes of synchronization:
 - Multicast
 - A server within a high speed LAN multicasts time to others which set clocks assuming some delay (not very accurate)
 - Procedure call
 - A server accepts requests from other computers (like Cristian’s algorithm). Higher accuracy.
 - Symmetric
 - Pairs of servers exchange messages containing time information
 - Used where very high accuracies are needed (e.g. for higher levels)
Messages exchanged between a pair of NTP peers

Each message bears timestamps of recent events:
- Local times of Send and Receive of previous message
- Local times of Send of current message
Messages exchanged between a pair of NTP peers

- Recipient notes the time of receipt T_i (we have T_{i-3}, T_{i-2}, T_{i-1}, T_i)
- In symmetric mode there can be a non-negligible delay between messages
Accuracy of NTP

- For each pair of messages between two servers, NTP estimates an offset o, between the two clocks and a delay d_i (total time for the two messages, which take t and t')
 \[T_{i-2} = T_{i-3} + t + o \text{ and } T_i = T_{i-1} + t' - o \]
- This gives us (by adding the equations):
 \[d_i = t + t' = T_{i-2} - T_{i-3} + T_i - T_{i-1} \]
- Also (by subtracting the equations)
 \[o = o_i + (t' - t)/2 \text{ where } o_i = (T_{i-2} - T_{i-3} + T_{i-1} - T_i)/2 \]
Accuracy of NTP

- Using the fact that $t, t'>0$ it can be shown that $o_i - d_i/2 \leq o \leq o_i + d_i/2$.
 - Thus o_i is an estimate of the offset and d_i is a measure of the accuracy.

- NTP servers filter pairs $<o_i, d_i>$, estimating reliability from variation, allowing them to select peers.

- Accuracy of 10s of millisecs over Internet paths (1 on LANs).
Logical time and logical clocks

- Instead of synchronizing clocks, event ordering can be used
 1. For any two events occurred at the same process p_i, they occurred in the order observed by p_i, that is \rightarrow_i
 2. When a message, m is sent between two processes, $send(m) \rightarrow receive(m)$
 3. The happened before relation is transitive
 4. The happened before relation is the relation of causal ordering

![Diagram illustrating logical and physical time with events a, b, c, d, m1, m2, and processes p1, p2, p3.]
Logical time and logical clocks

\[a \rightarrow b \text{ (at } p_1) \quad c \rightarrow d \text{ (at } p_2) \quad b \rightarrow c \text{ because of } m_1 \quad \text{also } d \rightarrow f \text{ because of } m_2 \]

Not all events are related by \(\rightarrow \);
consider \(a \) and \(e \) (different processes and no chain of messages to relate them);
they are not related by \(\rightarrow \); they are said to be concurrent; write as \(a \parallel e \)
A logical clock is a monotonically increasing software counter. It need not relate to a physical clock.

Each process \(p_i \) has a logical clock, \(L_i \) which can be used to apply logical (Lamport) timestamps to events

1. LC1: \(L_i \) is incremented by 1 before each event at process \(p_i \)
2. LC2:
 - (a) when process \(p_i \) sends message \(m \), it piggybacks \(t = L_i \)
 - (b) when \(p_j \) receives \((m, t)\) it sets \(L_j := \max(L_j, t) \) and applies LC1 before timestamping the event \(\text{receive}(m) \)
Lamport’s logical clocks

- each of p1, p2, p3 has its logical clock initialised to zero,
- the clock values are those immediately after the event.
- for \(m_1, 2 \) is piggybacked and \(c \) gets \(\max(0,2)+1 = 3 \)
- \(e \rightarrow e' \) implies \(L(e) < L(e') \)
- The converse is not true, that is \(L(e) < L(e') \) does not imply \(e \rightarrow e' \)
Lamport’s logical clocks

- A logical clock is a monotonically increasing software counter. It need not relate to a physical clock.
- Each process p_i has a logical clock, L_i which can be used to apply logical (Lamport) timestamps to events
 - LC1: L_i is incremented by 1 before each event at process p_i
 - LC2:
 - (a) when process p_i sends message m, it piggybacks $t = L_i$
 - (b) when pj receives (m,t) it sets $L_j := \max(L_j, t)$ and applies LC1 before timestamping the event receive (m)
Lamport’s Logical Clocks

(a) Three processes, each with its own clock. The clocks run at different rates.
(b) Lamport’s algorithm corrects the clocks.
Lamport’s Logical Clocks

The positioning of Lamport’s logical clocks in distributed systems.
Example: Totally Ordered Multicasting

Figure 6-11. Updating a replicated database and leaving it in an inconsistent state.
Vector Clocks

Concurrent message transmission using logical clocks.
Vector clocks

- Vector clocks overcome the shortcoming of Lamport logical clocks ($L(e) < L(e')$ does not imply $e \rightarrow e'$)
- Vector timestamps are used to timestamp local events
- $V_i[i]$ is the number of events that p_i has timestamped
- $V_i[j]$ ($j \neq i$) is the number of events at p_j that p_i has been affected by
Vector clocks

- Vector clock V_i at process p_i is an array of N integers
 - VC1: initially $V_i[j] = 0$ for $i, j = 1, 2, \ldots N$
 - VC2: before p_i timestamps an event it sets $V_i[i] := V_i[i] + 1$
 - VC3: p_i piggybacks $t = V_i$ on every message it sends
 - VC4: when p_i receives (m, t) it sets $V_i[j] := \max(V_i[j], t[j])$ (a merge operation)
Vector clocks

- At p_1 a $(1,0,0)$ b $(2,0,0)$ piggyback $(2,0,0)$ on m_1
- At p_2 on receipt of m_1 get $\max((0,0,0), (2,0,0)) = (2,0,0)$, add 1 to own element $= (2,1,0)$
- Meaning of $=, <=, \max$ etc for vector timestamps - compare elements pairwise
- Note that $e \rightarrow e'$ implies $V(e) < V(e')$. The converse is also true.
- $c \parallel e$ (parallel) because neither $V(c) \leq V(e)$ nor $V(e) \leq V(c)$.

Physical time

(1,0,0) (2,0,0) (2,1,0) (2,2,0) (2,2,2)
Enforcing Causal Communication

Figure 6-13. Enforcing causal communication.
accurate timekeeping is important for distributed systems.

algorithms (e.g. Cristian’s and NTP) synchronize clocks in spite of their drift and the variability of message delays.

for ordering of an arbitrary pair of events at different computers, clock synchronization is not always practical.

the happened-before relation is a partial order on events that reflects a flow of information between them.

Lamport clocks are counters that are updated according to the happened-before relationship between events.

vector clocks are an improvement on Lamport clocks,

we can tell whether two events are ordered by happened-before or are concurrent by comparing their vector timestamps
Distributed Systems

End of lectures