Rice's Theorem

Every property of programs which concerns the I/O behaviour is undecidable.

```
" P is terminating on every input "
" P has some fixed m ∈ N as an output "
" P computes a function f "
...

" the length of program P is ≤ 10 "
```

What is a behavioural property of a program?

```
A ⊆ IN
↑
set of programs
(program property)
```

```
T = \{ m | P_m is terminating on every input \}
= \{ m | P_m is total \}
```

```
\text{ONE} = \{ m | \text{P_m is a sound implementation of } \Pi \}
= \{ m | \text{P_m is } \Pi \}
```

A ⊆ IN (program property) is a behavioural property if for all programs m ∈ IN
the fact that m ∈ A or m ∉ A

only depends on P_m
Def. (saturated / extensional set): $A \in \mathbb{N}$ is saturated (extensional) if for all $m, n \in \mathbb{N}$

if $m \in A$ and $\varphi_m = \varphi_n$ then $m \in A$

\supseteq

A saturated if $A = \{ m \mid \varphi_m \text{ satisfies a property of functions} \}$

= $\{ m \mid \varphi_m \in \mathcal{A} \}$

where $\mathcal{A} = \{ \varphi \}$ set of all functions

Examples

$\times \ \mathcal{T} = \{ m \mid \varphi_m \text{ is terminating on every input} \}$

= $\{ m \mid \varphi_m \text{ is total} \}$

= $\{ m \mid \varphi_m \in \mathcal{C} \}$

$\mathcal{C} = \{ f \in \mathcal{F} \mid f \text{ total} \}$

$\times \ \text{ONE} = \{ m \mid \varphi_m \text{ is a sound implementation of 1} \}$

= $\{ m \mid \varphi_m = 1 \}$

= $\{ m \mid \varphi_m \in \{ 1 \} \}$

$\times \ \text{LEN}^{10} = \{ m \mid \varphi_m \text{ has length } \leq 10 \}$

$m, n \in \text{LEN}^{10}$

and $\varphi_m = \varphi_n$

$m \notin \text{LEN}^{10}$

Ex. $m = \varphi\left(\{1\}\right) \in \text{LEN}^{10}$

$\varphi_m = \varphi_n = 0$

\uparrow

constant

zero

$m = \varphi\left(\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}\right) > 11 \notin \text{LEN}^{10}$
\[K = \{ m \mid \varphi_m(m) \downarrow \} = \{ m \mid \varphi_m \in \mathcal{G}_1 \} \]

It seems that \(K \) is not saturated.

Formally, I should find \(m, m \in \mathbb{N} \)

- \(m \in K \quad \varphi_m(m) \downarrow \)
- \(m \notin K \quad \varphi_m(m) \uparrow \)

and \(\varphi_m = \varphi_m \)

If we were able to show that there is program \(m \in \mathbb{N} \) s.t.

\[\varphi_m(x) = \begin{cases} 1 & \text{if } x = m \\ \uparrow & \text{otherwise} \end{cases} \]

we can conclude:

1. \(m \in K \quad \varphi_m(m) \downarrow \)

2. For a computable function there are infinitely many programs hema hure is \(m \neq m \) s.t. \(\varphi_m = \varphi_m \)

3. \(m \notin K \quad \varphi_m(m) \uparrow \quad \varphi_m(m) \uparrow \Rightarrow \varphi_m = \varphi_m \quad m \neq m \)

\(K \) is not saturated!

What about \((\ast) \)?

\[x \xrightarrow{\varphi} \text{P} \quad \begin{cases} \text{if } x = \text{P} \text{ then } 1 \\ \text{if } x \neq \text{P} \text{ then } \uparrow \end{cases} \]

\[\text{def } P(x) : \quad \begin{cases} \text{if } x = \text{"def } P(x) : \text{..."} \\ \quad \text{if } x \neq \text{P} \text{ then } \uparrow \end{cases} \]
Rice’s Theorem:

Let \(A \subseteq \mathbb{N} \) if \(A \) is nonempty, \(A \neq \emptyset, A \neq \mathbb{N} \)

then \(A \) is not recursive.

Proof:

we show \(K \leq_m A \) (since \(K \) is not recursive, \(\neg m \), \(A \) not recursive)

Let \(e_0 \in \mathbb{N} \) be s.t. \(\varphi_{e_0}(x) \uparrow \forall x \) (program for the function always undefined)

1. Assume \(e_0 \notin A \)

 let \(e_1 \in A \) (it exists since \(A \neq \emptyset \))

 define

 \[
 g(x, y) = \begin{cases}
 \varphi_{e_1}(y) & \text{if } x \in K \\
 \varphi_{e_0}(y) & \text{if } x \in \overline{K}
 \end{cases}
 \]

 \[
 = \begin{cases}
 \varphi_{e_1}(y) & \text{if } x \in K \quad [\varphi_x(x) \downarrow] \\
 \uparrow & \text{if } x \in \overline{K} \quad [\varphi_x(x) \uparrow]
 \end{cases}
 \]

 \[
 = \varphi_{e_1}(y) \land \varphi_x(x)
 \]

 computable!
By smm theorem there is \(S : \mathbb{N} \to \mathbb{N} \) total and computable s.t. \(\forall x, y \)

\[
\phi_{S(x)}(y) = g(x, y) = \begin{cases}
\phi_{e_1}(y) & \text{if } x \in K \\
\phi_{e_0}(y) & \text{if } x \notin K
\end{cases}
\]

\(S \) is the reduction function for \(K \subseteq \mu A \)

* \(x \in K \implies S(x) \in A \)

if \(x \in K \) then \(\phi_{S(x)}(y) = g(x, y) = \phi_{e_1}(y) \quad \forall y \)

i.e. \(\phi_{S(x)} = \phi_{e_1} \). Since \(e_1 \in A \) and \(A \) saturated \(\iff S(x) \in A \)

* \(x \notin K \implies S(x) \notin A \)

if \(x \notin K \) then \(\phi_{S(x)}(y) = g(x, y) = \phi_{e_0}(y) \quad \forall y \)

i.e. \(\phi_{S(x)} = \phi_{e_0} \). Since \(e_0 \notin A \) and \(A \) saturated \(\iff S(x) \notin A \)

Hence \(S \) is the reduction function for \(K \subseteq \mu A \) and since \(K \) not recursive, we deduce \(A \) not recursive.

2) if instead \(e_0 \notin A \)

\(e_0 \notin \bar{A} \)

\(\bar{A} \) saturated (since \(A \) is saturated)

\(\bar{A} \neq \emptyset \) (since \(A \neq \emptyset \))

\(\bar{A} \neq \emptyset \) (since \(A \neq \emptyset \))

\(\therefore \) by (1) applied to \(\bar{A} \) we deduce \(\bar{A} \) not recursive

\(\therefore A \) not recursive (since \(A \) recursive \(\Rightarrow \bar{A} \) recursive)
* Output problem \(B_m = \{ x \mid m \in E_x \} \)

we observed \(k \leq_m B_m \)

- \(B_m \) saturated,
 - in fact

 \(B_m = \{ x \mid \varphi_x \in B_m \} \)

 \(B_m = \{ f \mid m \in \text{odd}(f) \} \)

- \(B_m \neq \emptyset \)

 e.g.

 let \(e_1 \in \mathbb{N} \) be s.t.

 \(\varphi_{e_1}(y) = y \quad \forall y \quad \Rightarrow \quad m \in E_{e_1} = \mathbb{N} \)

 \(\Rightarrow e_1 \in B_m \neq \emptyset \)

- \(B_m \neq \mathbb{N} \)

 e.g.

 let \(e_2 \in \mathbb{N} \) s.t.

 \(\varphi_{e_2}(y) = m \quad (\neq m) \quad \forall y \)

 \(e_2 \in B_m \quad (\text{since } m \notin E_{e_2} = \{m\} \) \)

 \(\Rightarrow \) By Rice's Theorem \(B_m \) is not recursive.

Example:

\(I = \{ x \in \mathbb{N} \mid \varphi_x \text{ has infinitely many possible outputs} \} \)

\(= \{ x \in \mathbb{N} \mid E_x \text{ is infinite} \} \)

* saturated

\(I = \{ x \mid \varphi_x \in Y \} \)

with \(Y = \{ f \mid \text{odd}(f) \text{ infinite} \} \)

* \(I \neq \emptyset \)

 if \(e_1 \) is as in previous exercise \(\Rightarrow E_{e_1} = \mathbb{N} \text{ infinite} \quad \Rightarrow \quad e_1 \in I \)

* \(I \neq \mathbb{N} \)

 if \(e_2 \) is as before \(\Rightarrow E_{e_2} = \{m\} \quad \Rightarrow \quad e_2 \notin I \)

\(\Rightarrow \) \(I \) is not recursive, by Rice's Theorem.
Example

\[A = \{ x \mid x \in W_x \cap E_x \} \]

saturated?

\[A = \{ x \mid p_x \in A \} \]

\[A = \{ f \mid ? \in \text{dom}(f) \cap \text{cod}(f) \} \]

we do not know what to put here

probably not saturated

we do not use Rice

We \(K \leq_m A \), i.e. that there is a total computable function \(s : \mathbb{N} \rightarrow \mathbb{N} \)

s.t.

\[x \in K \iff s(x) \in A \]

\[s(x) \in W_{s(x)} \quad \ldots \quad p_{s(x)}(s(x)) \downarrow \]

and

\[s(x) \in E_{s(x)} \quad \ldots \quad p_{s(x)}(y) = s(x) \quad \text{for some } y \]

we define

\[g(x, y) = \begin{cases} y & \text{if } x \in K \\ \uparrow & \text{otherwise} \end{cases} \]

\[= y \cdot \downarrow \left(p_x(x) \right) \]

\[= y \cdot \downarrow \left(p_y(x, y) \right) \quad \text{computable} \]

By smm theorem there is \(s : \mathbb{N} \rightarrow \mathbb{N} \) total computable s.t.

\[p_{s(x)}(y) = g(x, y) = \begin{cases} y & \text{if } x \in K \\ \uparrow & \text{otherwise} \end{cases} \quad \forall x, y \]

is the reduction function

\[\rightarrow \text{ if } x \in K \text{ then } p_{s(x)}(y) = g(x, y) = y \quad \forall y \]

Hence

\[s(x) \in W_{s(x)} \cap E_{s(x)} = \mathbb{N} \quad \text{Thus } s(x) \in A \]

\[\mathbb{N} \cap \mathbb{N} \]
\[\rightarrow \text{ if } x \notin K \text{ then } \psi_{s(x)}(y) = g(x,y) \uparrow \forall y \]

Hence

\[S(x) \notin W_{s(x)} \cap E_{s(x)} = \emptyset \]

Thus

\[s(x) \notin A \]

Thus \(K \leq_m A \), and, since \(K \) not recursive, also \(A \) is not recursive.