

# SEASONAL THERMOCHEMICAL HEAT STORAGE FOR DOMESTIC HEATING SYSTEMS

Patrucco Enrico, Castellazzi Paola, Rossetti Andrea

RSE S.p.A. – Ricerca Sistema Energetico

Generation Technologies and Materials

+39 3203713289

enrico.patrucco@rse-web.it

#### **CONTENT**



| <ul> <li>Introduction to heat storage technologies for seasonal applications</li> </ul> |
|-----------------------------------------------------------------------------------------|
| — Basics of thermochemical heat storage                                                 |
| <ul> <li>RSE experimental facility for thermochemical heat storage</li> </ul>           |
| — Experimental results                                                                  |





Goals and solutions

330 TWh/year in Italy

Use of renewable energy for space heating

How to maximize the use of **non-programmable** renewable energy sources, especially **solar**, for space heating during winter (and phase out fossil fuels)? We need alternative energy carriers and storage technologies.

Why long-term thermal energy storage?

Some **candidates**: PV + Power2Gas + Gas storage, PV + electrochemical storage. Problems related to low round-trip efficiency and costs. **Thermal energy storage** can be a promising alternative.





*Heat storage technologies* 







Heat storage technologies compared

| TES technology          | Energy density<br>[kWh/m <sup>3</sup> ]                      | Duration         | Efficiency<br>[%] | TRL          |  |
|-------------------------|--------------------------------------------------------------|------------------|-------------------|--------------|--|
|                         |                                                              |                  | 25 - 90           |              |  |
| Latent (PCM)            |                                                              |                  |                   | 4 - 7        |  |
| Thermochemical<br>(TCM) | 120 - 600                                                    | hours - seasonal | 75 - 100          | 3 - 4        |  |
|                         | High energy density Reduction in storage volume              |                  |                   |              |  |
|                         | Negligible thermal losses Efficient seasonal thermal storage |                  |                   | rmal storage |  |
|                         | No other option fo                                           |                  | l heat storage    |              |  |

Sarbu et al, A comprehensive review of thermal energy storage, Sustainability (2018)





# BASICS OF THERMOCHEMICAL HEAT STORAGE



Available technologies and research goals



RSE Ricerca sul Sistema Energetico - RSE S.p.A. Via R. Rubattino 54 - 20134 Milano | www.rse-web.it



Thermo-chemical materials (TCM)



Zbair et al, Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review (2021)



*Thermochemical storage system layout – summer operation (regeneration)* 





*Thermochemical storage system layout – winter operation (hydration)* 





RSE Ricerca sul Sistema Energetico - RSE S.p.A. Via R. Rubattino 54 - 20134 Milano | www.rse-web.it





Open cycle operation





Closed cycle operation





Material handling system – separate reactor concept







Laboratory setup



RSE Ricerca sul Sistema Energetico - RSE S.p.A. Via R. Rubattino 54 - 20134 Milano | www.rse-web.it



*Test conditions and parameters* 

**Goal:** verify system performances when inlet conditions change (air flow rate, humidity rate, regeneration conditions)

| Test conditions | Packed bed, 6 kg of Zeolite 13X<br>( <i>Sylobead MSC544, Grace</i> )<br>D <sub>BED</sub> = 21,1 cm; h <sub>BED</sub> = 28,7 cm    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Adsorption      | Q <sub>a</sub> = 25 - 30 Nm <sup>3</sup> /h<br>X <sub>IN</sub> = 5 - 10 g <sub>VAP</sub> /kg <sub>a</sub><br>T = 25 °C; p = 1 atm |
| Regeneration    | Q <sub>a</sub> = 28 Nm <sup>3</sup> /h<br>T = 190 °C; p = 1 atm<br>Duration = 7 h                                                 |



*Open cycle adsorption test – inlet and outlet humidity* 





#### ADSORPTION

Adsorbed vapor: 1,73 kg<sub>VAP</sub>

Zeolite vapor loading: 0,28 kg<sub>VAP</sub>/kg<sub>ZEO</sub>

Time of breakthrough: around 5,5 h



RSE Ricerca sul Sistema Energetico - RSE S.p.A. Via R. Rubattino 54 - 20134 Milano | www.rse-web.it

*Open cycle adsorption test – inlet, bed, and outlet temperature* 



#### RSE We move Search



**ΔT<sub>OUT,R</sub>:** 25 °C for about 6 hours

Heating thermal power: 260 W<sub>th</sub>

Bed energy density: 120 kWh/m<sup>3</sup>

#### **CONCLUSIONS**



| Why seasonal thermal energy storage with TCM? | Promising technology to help <b>phase-out fossil fuels</b> from the heating sector. Is expected to be <b>more efficient and economical</b> compared to other solutions.        |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suitable technologies<br>and materials?       | Thermochemical storage using MgSO4 composite materials is a promising technology. Zeolites are also compatible with domestic heating temperatures but show low energy density. |
| Results of the experimental campaign          | <b>Experimental tests</b> in the RSE facility using Zeolites have shown that the performance of the system is compatible with the heating of buildings.                        |



# THANK YOU FOR THE ATTENTION QUESTIONS?

+39 3203713289

enrico.patrucco@rse-web.it