

Reversible Fuel Cells for Long Duration Storage Thomas Zawodzinski, University of TN-Knoxville Team Members: Peroxygen Systems Inc

Project Vision

Not your grandfather's Fuel Cell! Peroxide as a Product enables high efficiency, low cost Virtually no self-discharge over long periods!

Reversible Fuel Cells

Peroxide Enabled Long Duration Electrochemical Energy Storage (PELoDEES)

Thomas Zawodzinski, University of Tennessee-Knoxville Team Members: Peroxygen Systems Inc, Electrosynthesis Inc

Project Vision

Not your grandfather's Fuel Cell EES System!

Peroxide as a Product enables high efficiency, low cost Virtually no self-discharge over long periods!

Total project cost:	\$1.5M	
Length	24 mo.	

ARPA-e Project Overview

Technology Summary

- Advanced reversible two-electron catalyst, implemented as a high surface electrode.
- Tailored OH⁻ conducting membranes.
- Flow fields for mixed phase air electrodes.
- Demonstrated as peroxide generation cells and as Znperoxide batteries.

Technology Impact

- Dramatic lowering of cost of peroxide, allowing on-site generation.
- High efficiency batteries with reversible air electrode.

Proposed Targets

Metric	State of Art	Proposed
Air electrode cycling, loss at 100 mA/cm ²	>300 mA/cm ²	<100 mA/cm ²
Peroxide production	<100 <u>mA/cm²</u> <u>@1.2</u> V	400 <u>mA/cm²</u> <u>@1.2</u> V
Battery single cell cycling efficiency	<50% RT	80% RT

O₂ saturated
 N₂ saturated

0.8

Reversible ORR to be

translated to high surface

area electrodes uA/cm² A/cm²

Co-Salen Complex

Ketjen Black

Advanced flow field Final C

Final Goal: Stack

Demonstrated High Efficiency Air Electrode for Multiple Applications

Highly conductive OHconducting membranes tailored to use

Air electrodes for High Energy Density Batteries

PELoDEES: A Path to Efficient Cycling to Leverage H₂ Storage Innovations in Catalysts-Cell-Stack-System

Reversible Fuel Cell (with a twist)

Stack at PSI Now Phase2 Chemicals

Electrode performance

Hydrogen and Oxygen in charged statecheap, easily available, near zero selfdischarge!

BUT

Conventional fuel cells are inefficient with expensive catalysts.

ENTER PELoDEES

We discovered cheap catalysts to produce peroxide with *electrochemical reversibility*

High efficiency

Possible long-term storage with extremely low self-discharge: in charged state we store H_2 and O_2

Room Temp Kodak CLAM 40mA/cm2 3hr Charge/ 3hr Discharge cycles 1mgSF15-70 Catalyst (or equiv) /cm2 with 28% and 16% AS4 in the electrode 100ml/min Air (0.57A/cm2) with 10ml/min 2.5M NaOH w/ 1M H_2O_2 (6.5A/cm2) 100µL/hr 30% H2O2 added (0.01A)

The Team

- Tom Zawodzinski, PI: 30 years experience as a leader in electrochemical S&T fuel cells, batteries, flow batteries, etc.
- UTK team—senior scientists: Shane Foister (chemical synthesis), Gabriel Goenaga (testing), Ramez Elgammal (material development)
- **PSI**: small (but growing) company commercializing peroxide catalyst technology
- New partner (projected): Electrosynthesis Co.--~40 years experience testing and scaling electrochemical technology.
- Unique consulting and 'ecosystem' infrastructure: Former GM fuel cell stack and system design for manufacturing doing design and TEA; small polymer company makes batches of starting materials; coating at scale at Kodak

Emma (Woodhouse) Zawodzinski

Project Objectives

- Technical Risks
 - 1. Catalyst performance on hydrogen electrode.
 - 2. Managing two-phase flow in stacks.
 - 3. For 'one-stack' design, achieving proper balance of material properties under reverse polarity.
- Prototype Size: In this phase of the work, we aim for proof of concept on 100 cm² cells and possibly a short stack.
- Scaling: The larger cell design is essentially a modular array of the 100 cm² cells. We have previously developed stacks using this concept. System design is relatively straightforward.

Results: Long term stability

Peroxide stability

- Concern based on literature values of decay rate in alkaline solution
- More recent additive package shows stability of ~97% over 10 hours
- TEA shows minimal cost from 'make-up'
- Stability in fully charged state is essentially unlimited (self-discharge minimal)
 - This enables long duration between cycles

Peroxide Stability, 30 °C, 10 hours

Results: Performance in 'single cell' systems

- Scaled-up to 100 cm² cells; results match those in 5 cm² cells
- Polarization curves (left) indicated that two different electrode constructs (labeled UTK and PSI) needed for positive and negative electrodes
- Hydrogen polarization curve indicate promising reversibility (hydrogen electrode shown) for single cell
 operation

- Performance targets (cell current density) can be met or exceeded but some difficulty with catalyst reproducibility.
- Cycling is beginning at this time.

Technoeconomic Analysis

CHANGING WHAT'S POSSIBLE

Technoeconomic Analysis: Costs

For system components, the following cost inputs were used:

- compressor/pump efficiency = 60%
- compressor/pump costs = \$1000 + \$1000/kW compressor/pump power
- low-pressure tank (balloon) cost = \$4/m² tank material. Commodity prices for aluminum coated mylar range from 0.5 to 2 \$/m². The higher price allows for fabrication cost.
- solution tank cost = \$2/kg tank material with density of 8,000 kg/m³ and thickness of 3 mm.
- O&M = 20% of Cp, capital cost for power-specific components.

Additional Cost Input for Part 2

- DC-DC boost = \$200/kW which was added to the power costs
- Miscellaneous = 10% of capital costs (both power and energy)
- Covers for storage balloons = \$20/m² footprint sized at 2x the gas storage balloons added to the energy costs
- Building Rent = \$60/m² footprint size at 100 m² plus 2 m² per stack which was added to the O&M costs
- Labor = \$100,000/yr which was added to the O&M costs

$$LCOS = \left[\left(\frac{1}{\eta_{RTE}} - 1 \right) P_c \sum_{t=1}^{T} \frac{n_c(t)}{(1+r)^t} + \sum_{t=1}^{T} \frac{O\&M(t)}{(1+r)^t} + \left(\frac{C_E}{\eta_D} + \frac{C_P}{d} \right) \right] * \left[\sum_{t=1}^{T} \frac{n_c(t)}{(1+r)^t} \right]^{-1}$$
[1]

Technoeconomic Analysis

- Detailed and complete breakdown of stack parts, costs
- Performance based on our SOTA

H2/O2 tank (each) (m³)554Solution tank (m³)11.4discharge parasitic (% of stack power)0.6charge parasitic (% of stack power)0.02discharge efficiency (%)90round trip efficiency (%)81stack costs (\$k) Internal Stack Cost60stack costs (\$k) NREL Stack Cost34power costs (\$k) (w/ NREL Stack Cost)37energy (tank) costs (\$k)5LCOS (\$/kWhr) Internal Stack Cost0.053LCOS (\$/kWhr) NREL Stack Cost0.034	Total Stack size (m ² active area)	122
Solution tank (m³)11.4discharge parasitic (% of stack power)0.6charge parasitic (% of stack power)0.02discharge efficiency (%)90round trip efficiency (%)81stack costs (\$k) Internal Stack Cost60stack costs (\$k) NREL Stack Cost34power costs (\$k) (w/ NREL Stack Cost)37energy (tank) costs (\$k)5LCOS (\$/kWhr) Internal Stack Cost0.053LCOS (\$/kWhr) NREL Stack Cost0.034	H2/O2 tank (each) (m ³)	554
discharge parasitic (% of stack power) 0.6 charge parasitic (% of stack power) 0.02 discharge efficiency (%) 90 round trip efficiency (%) 81 stack costs (\$k) Internal Stack Cost 60 stack costs (\$k) NREL Stack Cost 34 power costs (\$k) (w/ NREL Stack Cost) 37 energy (tank) costs (\$k) 5 LCOS (\$/kWhr) Internal Stack Cost 0.053 LCOS (\$/kWhr) NREL Stack Cost 0.034	Solution tank (m ³)	11.4
discharge parasitic (% of stack power)0.6charge parasitic (% of stack power)0.02discharge efficiency (%)90round trip efficiency (%)81stack costs (\$k) Internal Stack Coststack costs (\$k) Internal Stack Cost60stack costs (\$k) NREL Stack Cost34power costs (\$k) (w/ NREL Stack Cost)37energy (tank) costs (\$k)5LCOS (\$/kWhr) Internal Stack CostLCOS (\$/kWhr) NREL Stack Cost0.053LCOS (\$/kWhr) NREL Stack Cost0.034		
charge parasitic (% of stack power)0.02discharge efficiency (%)90round trip efficiency (%)81stack costs (\$k) Internal Stack Cost60stack costs (\$k) NREL Stack Cost34power costs (\$k) (w/ NREL Stack Cost)37energy (tank) costs (\$k)5LCOS (\$/kWhr) Internal Stack Cost0.053LCOS (\$/kWhr) NREL Stack Cost0.034	discharge parasitic (% of stack power)	0.6
discharge efficiency (%)90round trip efficiency (%)81stack costs (\$k) Internal Stack Cost60stack costs (\$k) NREL Stack Cost34power costs (\$k) (w/ NREL Stack Cost)37energy (tank) costs (\$k)5LCOS (\$/kWhr) Internal Stack Cost0.053LCOS (\$/kWhr) NREL Stack Cost0.034	charge parasitic (% of stack power)	0.02
round trip efficiency (%) 81 stack costs (\$k) Internal Stack Cost 60 stack costs (\$k) NREL Stack Cost 34 power costs (\$k) (w/ NREL Stack Cost) 37 energy (tank) costs (\$k) 55 LCOS (\$/kWhr) Internal Stack Cost 0.053 LCOS (\$/kWhr) NREL Stack Cost 0.034	discharge efficiency (%)	90
stack costs (\$k) Internal Stack Cost60stack costs (\$k) NREL Stack Cost34power costs (\$k) (w/ NREL Stack Cost)37energy (tank) costs (\$k)5LCOS (\$/kWhr) Internal Stack Cost0.053LCOS (\$/kWhr) NREL Stack Cost0.034	round trip efficiency (%)	81
stack costs (\$k) Internal Stack Cost60stack costs (\$k) NREL Stack Cost34power costs (\$k) (w/ NREL Stack Cost)37energy (tank) costs (\$k)5LCOS (\$/kWhr) Internal Stack Cost0.053LCOS (\$/kWhr) NREL Stack Cost0.034		
stack costs (\$k) NREL Stack Cost34power costs (\$k) (w/ NREL Stack Cost)37energy (tank) costs (\$k)5LCOS (\$/kWhr) Internal Stack Cost0.053LCOS (\$/kWhr) NREL Stack Cost0.034	stack costs (\$k) Internal Stack Cost	60
power costs (\$k) (w/ NREL Stack Cost) 37 energy (tank) costs (\$k) 5 LCOS (\$/kWhr) Internal Stack Cost 0.053 LCOS (\$/kWhr) NREL Stack Cost 0.034	stack costs (\$k) NREL Stack Cost	34
energy (tank) costs (\$k) 5 LCOS (\$/kWhr) Internal Stack Cost 0.053 LCOS (\$/kWhr) NREL Stack Cost 0.034	power costs (\$k) (w/ NREL Stack Cost)	37
LCOS (\$/kWhr) Internal Stack Cost 0.053 LCOS (\$/kWhr) NREL Stack Cost 0.034	energy (tank) costs (\$k)	5
LCOS (\$/kWhr) Internal Stack Cost0.053LCOS (\$/kWhr) NREL Stack Cost0.034		
LCOS (\$/kWhr) NREL Stack Cost 0.034	LCOS (\$/kWhr) Internal Stack Cost	0.053
		0.004

Size Matters

	0.1 A/cm ²	0.2 A/cm ²
100 kW	0.304	0.289
1 MW	0.084	0.069
10 MW	0.062	0.046

LCOS (\$/kWhr) using NREL stack costs

A ~100x increase in size was needed to reduce the impact of labor costs to an acceptable LCOS value. Doubling of stack performance reduced the cost by 0.015 /kWhr.

Results: Cost

- Cost estimates (all-in) show clear paths to meeting cost targets
 - Enabled by low cost materials, high efficiency
- Many configurations, ways of using system possible

Solar farm storage use case:

10 MW system had an LCOS of **0.039** \$/kWhr*. Based on recent results, we have small gains on this figure.

*Operating at 0.2 A/cm² (1.1 V charge, 0.71 V discharge) with 10 hr discharge, 9.75 hr charge and 4.25 hr idle with 2.5% peroxide decomposition and H_2 and O_2 makeup, without labor or DC-DC boost,

Results: Cost

17

- Cost estimates (all-in) show clear paths to meeting cost targets
 - Enabled by low cost materials, high efficiency
- Many configurations, ways of using system possible

Solar farm storage use case:

10 MW system had an LCOS of **0.039** \$/kWhr*. Based on recent results, we have small gains on this figure.

*Operating at 0.2 A/cm² (1.1 V charge, 0.71 V discharge) with 10 hr discharge, 9.75 hr charge and 4.25 hr idle with 2.5% peroxide decomposition and H_2 and O_2 makeup, without labor or DC-DC boost,

Challenges and Potential Partnerships

- Known issues that we attacked
 - Proving sufficient peroxide stability and cost of mitigation. *Solved*
 - Stack design issues. *We have functioning solutions*.
 - Getting to a system understanding, supply chain. *Baked into project*.
- Known unknowns: Coulombic efficiency issues (catalysts).
- Unknown unknowns: (Accelerating development and/or deployment) Cycling performance; Solving stack design challenges and getting to system implementation; Identification of long-duration use cases. Teaming with integrators.
- Partnerships: Eventually plan to form a joint-venture company for next stage of development beyond next BP.' Options open.

Technology-to-Market

Our ultimate goal

Provide inexpensive and flexible LDS based on hydrogen and oxygen, including a wholesystem concept and paths to manufactured system.

► Timeline

We are still fairly early stage in development; hardware design is modular and all work is directly connected to system considerations.

Getting Beyond the Current Status

Some teaming with system developers/integrators. Improved catalyst synthesis. An end to COVID-based restrictions (to allow some planned material scale-up)!

Possible commercial applications and market entry options:

Applications: transportable LDS for disaster response and related. Possibilities for seasonal H_2 storage.

Market Entry Approach: Options open; PSI is key partner now but spin-off likely.

Summary: PELoDEES Innovations in Catalysts-Cell-Stack-System

Status

- Stack-sized cell modules built and tested; material, catalyst issues being addressed.
- · Cycling of cells imminent.
- System design in hand. Next phase would include 'brassboard' system.

Possible commercial applications and early options: transportable LDS for disaster response and related. Possibilities for seasonal H₂ storage.

https://arpa-e.energy.gov

Thanks to Scott, Max and Sean for helpful discussions throughout.

