Automata, Languages and Computation

Chapter 3 : Regular Expressions

Master Degree in Computer Engineering
University of Padua
Lecturer : Giorgio Satta

Lecture based on material originally developed by :
Gösta Grahne, Concordia University
Regular Expressions

\b[\w.%-]+@[\w.-]+\.[a-zA-Z]{2,6}\b

character set [...] (match one out of several)

special characters

At symbol

alpha-num, _, dot, or dash char

dot

upper or lower alpha character

word boundary

any alpha-numeric char, _

match previous [...] pattern at least one time

the \{x,y\} modifier means that the previous pattern must have 2-6 characters

Parse: username@domain.TLD (top level domain)
1. Regular Expressions: a declarative formalism for regular languages

2. FA and regular expressions: the two language classes are the same

3. Algebraic laws for regular expressions
A FA (NFA or DFA) is a “blueprint” for constructing a machine recognizing a regular language

Though a FA can be easily implemented, it is often difficult to interpret its meaning

A regular expression is a “user-friendly,” declarative way of describing a regular language
Introduction

Example: \(01^* + 10^*\) denotes all binary strings that
- start with 0 followed by zero or more 1's; or
- start with 1 followed by zero or more 0's

Regular expressions are used in
- UNIX `grep` command
- Perl programming language
- pattern matching applications
- tools for automatic constructions of lexical analyzers
Operations on languages

Union: \(L \cup M = \{ w \mid w \in L \text{ or } w \in M \} \)

Concatenation: \(L.M = \{ w \mid w = xy, x \in L, y \in M \} \)

Note: dot operator often omitted

Note: \(\emptyset.L = L.\emptyset = \emptyset \)

Powers:
- \(L^0 = \{ \epsilon \} \)
- \(L^k = L.L^{k-1} \), for \(k \geq 1 \)

Kleene closure: \(L^* = \bigcup_{i=0}^{\infty} L^i \)

In mathematics operator ‘*’ is also known as the free monoid construction.
Example

Let $L = \{0, 11\}$. In order to construct L^*:

- $L^0 = \{\epsilon\}$
- $L^1 = L = \{0, 11\}$
- $L^2 = L.L^1 = L.L = \{00, 011, 110, 1111\}$
- $L^3 = L.L^2 = \{000, 0011, 0110, 01111, 1100, 11011, 11110, 111111\}$

Therefore

$L^* = \{\epsilon, 0, 11, 00, 011, 110, 1111, 000, 0011, 0110, 01111, 1100, 11011, 11110, 111111, \ldots\}$
Example

Construct \emptyset^*:

- $\emptyset^0 = \{\varepsilon\}$
- $\emptyset^i = \emptyset$, for every $i \geq 1$

Therefore $\emptyset^* = \{\varepsilon\}$
Operations on languages

Note: We have used the operator $*$ on alphabets (Σ^*); we now use the same operator with languages (L^*).

What happens when $\Sigma = L$?

- elements of Σ are symbols, while elements of L are strings
- the result is the same
Inductive definition of regular expressions

A **regular expression** E over alphabet Σ and the **generated** language $L(E)$ are recursively defined as follows

Base

- ϵ is a regular expression, and $L(\epsilon) = \{\epsilon\}$
- \emptyset is a regular expression, and $L(\emptyset) = \emptyset$
- If $a \in \Sigma$, then a is a regular expression, and $L(a) = \{a\}$

Note the bold typesetting to distinguish the regular expression from the associated alphabet symbol.
Inductive definition of regular expressions

Induction

- If E and F are regular expressions, then $E + F$ is a regular expression, and $L(E + F) = L(E) \cup L(F)$
- If E and F are regular expressions, then EF is a regular expression, and $L(EF) = L(E)L(F)$
- If E is a regular expressions, then E^* is a regular expression, and $L(E^*) = (L(E))^*$

 Note the overloading of the symbol ‘*’
- If E is a regular expressions, then (E) is a regular expression, and $L((E)) = L(E)$
Example

Specify a regular expression for

\[L = \{ w \mid w \in \{0, 1\}^*, \text{ no occurrence of 00 or 11 in } w \} \]

0 can only be followed by 1; 1 can only be followed by 0

Four cases, based on the choice of the start/end symbol

\[(01)^* + (10)^* + 0(10)^* + 1(01)^*\]

Equivalently, but in a more compact form

\[(\varepsilon + 1)(01)^*(\varepsilon + 0)\]

\(\varepsilon\) used to make other symbols optional
Operator’s precedence

Precedence of operators (higher first)
- Kleene closure (*)
- concatenation (dot)
- union (+)

Example: $01^* + 1$ means $(0(1^*)) + 1$

Use parentheses to force precedence
Each regular expression can be naturally associated with a tree structure representing its recursive definition.

This will be used many times later, in proofs based on structural induction.

To this end, we assume binary operators are left associative.

Example: 010 means ((01)0)
Structure of a regular expression

Example: The regular expression \((\varepsilon + 1)(01)^* (\varepsilon + 0)\) can be associated with the following tree
Write regular expressions for the following languages

- strings over \{a, b\} starting with \(a\) and ending with \(bb\)
- strings over \{a, b\} with at least two occurrences of \(a\)
- strings over \{0, 1\} with 1 in the seventh to last position
- strings over \{0, 1, 2\} with zero or more 0’s, or else (exclusive) with one or more 1’s, or else (exclusive) with two or more 2’s
- strings over \{a, b\} with at least one occurrence of \(a\) and at least one occurrence of \(b\)
Specify in words the languages generated by the following regular expressions, defined over \(\Sigma = \{0, 1\} \)

- \((0 + 1)^*11(0 + 1)^*\)
- \((1 + \epsilon)(00^*1)0^*\)
We have already shown that DFA, NFA, and ϵ-NFA are equivalent.

To show that FA and regular expressions are equivalent, we will show that:

- for each DFA A there is a regular expression R such that $L(R) = L(A)$
- for each regular expression R there is a ϵ-NFA A such that $L(A) = L(R)$
From DFA to regular expression

Theorem If $L = L(A)$ for some DFA A, then there exists a regular expression R such that $L(R) = L$

Proof

We construct R from A using the state elimination technique
Construction by state elimination

Based on the subsequent elimination of the states of the DFA, without altering the generated language.

Initially

- transitions on symbol a are relabeled with the equivalent regular expressions a
- in some cases: if there is no transition between pair p, q, we create a new transition $p \rightarrow q$ with label \emptyset

p and q could be the same state
Construction by state elimination

States q_1, \ldots, q_k are the **antecedents** of s and states p_1, \ldots, p_m are the **successors** of s, assuming $s \neq q_i, p_j$; these two sets are not necessarily disjoint.
We can now eliminate state s

\[
\begin{align*}
q_1 & \quad R_{11} + Q_1 S^* P_1 \\
& \quad R_{1m} + Q_1 S^* P_m \\
& \quad R_{k1} + Q_k S^* P_1 \\
& \quad R_{km} + Q_k S^* P_m \\
p_1 & \\
p_m
\end{align*}
\]

If antecedent or successor set is empty, we can eliminate s without adding arcs (R empty, Q or P empty)
Construction by state elimination

Construction of the regular expression:

- for each final state q, we remove from the initial automaton all states except q_0 and q, resulting in an automaton A_q with at most two states.
- we convert each automaton A_q to a regular expression E_q and combine with the union operator.
Construction by state elimination

A_q can be in one of the two following forms:

\[\begin{array}{c}
R \\
S \\
T \\
\end{array} \quad \begin{array}{c}
U \\
\end{array} \]

corresponding to the regular expression $E_q = (R + SU^* T)^* SU^*$

\[\begin{array}{c}
R \\
\end{array} \]

corresponding to the regular expression $E_q = R^*$

The final regular expression is then

\[\bigoplus_{q \in F} E_q \]
Example

The construction by state elimination works for every type of FA. Consider NFA M

$$
\begin{array}{c}
\text{Start} \\
\text{A} \\
\text{B} \\
\text{C} \\
\text{D}
\end{array}
\begin{array}{cccc}
0,1 & 1 & 0,1 & 0,1 \\
\end{array}
$$

recognizing the language

$$L(M) = \{ w \mid w = x1b \text{ or } w = x1bc, \ x \in \{0,1\}^*, \ b, c \in \{0,1\}\}$$

Construct from M a regular expression generating $L(M)$
Example

We transform M into an automaton with equivalent regular expressions at each transition
We eliminate state B

We have simplified the regular expression $1\emptyset^*(0 + 1)$ as $1(0 + 1)$, since $L(\emptyset^*) = \{\epsilon\}$
Example

We eliminate state \(C \) resulting in \(M_D \)

\[
E_D = (0 + 1)^* 1(0 + 1)(0 + 1)
\]
We eliminate state D resulting in M_C

$$E_C = (0 + 1)^*1(0 + 1)$$

The desired regular expression is the sum of E_D and E_C:

$$(0 + 1)^*1(0 + 1)(0 + 1) + (0 + 1)^*1(0 + 1)$$
Exercise

Write a regular expression for the language L over $\Sigma = \{0, 1, 2\}$ such that, for each string in L, the sum of its digits is an odd number.

Suggestion

- start specifying a DFA that accepts L
- then construct the equivalent regular expression
Theorem For every regular expression R we can construct an ϵ-NFA E such that $L(E) = L(R)$

Proof

We construct E with

- only one final state
- no arc entering the initial state
- no arc exiting the final state

This will make it easier/safer to connect FAs

The construction uses structural induction
From regular expression to ϵ-NFA

Base Automata for regular expressions ϵ, \emptyset, and a

(a) ϵ

(b) \emptyset

(c) a
From regular expression to ϵ-NFA

Induction Automata for $R + S$, RS, ϵR^*

(a)

(b)

(c)
Example

Construct ϵ-NFA for the regular expression $(0 + 1)^*1(0 + 1)$
There are some similarities between regular expressions and arithmetic expressions, if we consider the union as the sum and concatenation as the product.

As for arithmetic expressions, there are similar properties for regular expressions (commutativity, distributivity, etc.)

There exists also specific properties for regular expressions, mainly related to Kleene’s closure operator, which do not correspond to any laws of arithmetic.

In the following slides, L, M, N are regular expressions, not languages.
Commutativity and associativity

Union is **commutative** : \(L + M = M + L \)

Union is **associative** : \((L + M) + N = L + (M + N)\)

Concatenation is **associative** : \((LM)N = L(MN)\)

Concatenation is **not commutative** : there exist \(L \) and \(M \) such that \(LM \neq ML \). **Example** : \(10 \neq 01\)
Identity and annihilators

Very useful in simplifying regular expressions:

∅ is the **identity** for union: ∅ + L = L + ∅ = L

ε is the **left identity** and the **right identity** for concatenation:
εL = Lε = L

∅ is the **left annihilator** and the **right annihilator** for concatenation: ∅L = L∅ = ∅
Distributivity and idempotence

Concatenation is **left distributive** over union:
\[L(M + N) = LM + LN \]

Concatenation is **right distributive** over union:
\[(M + N)L = ML + NL \]

Union is **idempotent**:
\[L + L = L \]
Kleene closure & other operators

\[(L^*)^* = L^* \quad \text{(proof in later slides)}\]

\[\emptyset^* = \epsilon\]

\[\epsilon^* = \epsilon\]

\[L^+ = LL^* = L^*L\]

\[L^* = L^+ + \epsilon\]

\[L? = \epsilon + L\]
Exercise with solution

Prove that the regular expressions $(R^*)^*$ and R^* are equivalent

$L((R^*)^*) = (L(R^*))^* = ((L(R))^*)^*$

$L(R^*) = (L(R))^*$

Assuming $L(R) = L_R$, we need to show $(L_R^*)^* = L_R^*$
Exercise with solution

\[w \in (L_R^*)^* \iff w \in \bigcup_{i=0}^{\infty} \left(\bigcup_{j=0}^{\infty} L_R^j \right)^i \]

\[\iff \exists k, m \in \mathbb{N} : w \in (L_R^m)^k \]

\[\iff \exists p \in \mathbb{N} : w \in L_R^p \]

\[\iff w \in \bigcup_{i=0}^{\infty} L_R^i \]

\[\iff w \in L_R^* \]

In the right to left direction, choose \(k = 1 \) and \(m = p \)