
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it

Lab exercises

2

Doubly linked lists

Problem: recording, retrieving, updating and saving Golf Scores by using a
doubly linked list.
In recording scores for a golf tournament, we enter the name and score of the
player as the player finishes. This information is to be retrieved in each of the
following ways:
• Scores and names can be printed in order by ascending or by descending

scores.
• Given the name of a player, other players with the same score shall be

printed.

3

Doubly linked lists

The program will print the following menu
[1] Print list in ascending order of scores
[2] Print list in descending order of scores
[3] Search player
[4] Load new scores
[5] Save scores
[6] Exit
Make your choice:

Make use of the three files scoresn.txt in order to update twice golf scores.
Print list in both orders and save data after first reading and after each update.

4

Binary search trees

Problem: recording the data of 20 worldwide capitals from the file capitals.txt
in a binary search tree (ordered considering the population) and
• Print the tree in ascending order of population;
• Print the tree in descending order of population;
• Search for a capital and print its population
• Insert new capitals data from file capitals2.txt in the binary search tree, print

the above mentioned lists and search for a capital.

5

Binary search trees

The program will print the following menu
[1] Print tree in ascending order of population
[2] Print tree in descending order of population
[3] Search capital
[4] Load new capitals
[5] Save data in ascending order of population
[6] Exit
Make your choice:

6

Insert operation

7

// insertion
struct node* insert(struct node * root, int x) {

//searching for the place to insert
if (root == NULL)

return newNode(x);
else if (x > root->data) // x is greater. Should be inserted to the right

root->right_child = insert(root->right_child, x);
else // x is smaller and should be inserted to left

root->left_child = insert(root->left_child, x);
return root;

}

Search operation

8

// searching operation
struct node* search(struct node * root, int x) {

if (root == NULL || root->data == x) //if root->data is x the element is found
return root;

else if (x > root->data) // x is greater, so we will search the right subtree
return search(root->right_child, x);

else //x is smaller than the data, so we will search the left subtree
return search(root->left_child, x);

}

	COMPUTER ENGINEERING LABORATORY
	Lab exercises
	Doubly linked lists
	Doubly linked lists
	Binary search trees
	Binary search trees
	Insert operation
	Search operation

