
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it


Struct, arithmetic expressions 
evaluation, functions, bitwise 
operators, input and output hints

2



Struct

3

▪ Structures are derived data types, built using elements 
(members) of other types
▪ A structure is defined with the keyword: struct
▪ Example:

struct student { 
char  surname[20]; 
char  name[20];
unsigned int id;
unsigned int birthYear; 
char gender;

};

Variables declared within 
the parentheses are the 
members of the struct



Struct

4

▪ The type of the members of a struct can be any:
▪ int, float, char, …
▪ arrays, other structs, unions, …
▪ Example:

struct point {
int  x;
int  y;
};
struct rectangle { 

struct point highLeft;
 struct point lowRight;
};



Struct

5

▪ Structure definitions do not reserve any memory space but create 
a new data type

▪ Structure type variables are declared like all other "standard" type 
variables (i.e. int, float, char ...)

struct student std1, std2;

struct student {
…
} std1, std2;



Struct

6

▪ Two operators are used to access individual members:
▪ The structure member operator: .
▪ The structure pointer operator: ->
▪ Let's see two examples:

printf(“%s\t%s\n”, std1.name, std1.surname);

printf(“%s\t%s\n”, stdPtr->name, stdPtr->surname);

(Assuming that the pointer stdPtr was initialized with the std1 address)



Struct

7

▪ It is a good idea to combine the definition of structures with typedef 
for greater readability.

▪ Basically, typedef is used to assign symbolic names (aliases) to data types
▪ Usually struct and typedef are used together, but a classic example of using 

typedef is also the following:

typedef unsigned char Byte;

• There is some similarity between typedef and #define (both allow you to define 
aliases/symbolic names), however:
• typedef is limited to defining aliases for types
• #define is “more general” (e.g. we can define aliases for values) and is 

processed by the pre-processor, while typedef statements are processed by 
the compiler



Struct

8

▪ Types can use a different number of bytes depending on the 
architecture/compiler
▪ For example int can use 2 or 4 bytes

▪ A very useful (and used) operator in C is sizeof
▪ It is a unary operator that returns the number of bytes necessary to 

allocate a type or variable

sizeof(int); // 4

char name[20];

sizeof(name); // 20



Expression Evaluation Rules

9

• The arithmetic of C is not always the same as how we carry out the 
calculations (we must take this into account).

2
3 ∗ 2

• How does C calculate the expression?

?Hypothesis 1
2
3 ∗ 2 = 3

NO because the expressions are not executed in the expected order:

(3/2)*2



Expression Evaluation Rules

10

• How does C calculate the expression?

?Hypothesis 2 3
2

∗ 2 = 1.5 ∗ 2 = 3

NO because 3/2 is an operation between integers, not between reals (the 
numbers do not have the decimal part, 3.0). The expression below is correct:

3.0/2.0*2.0=3

So which is the result of 3/2*2?
3
2

∗ 2 = 1 ∗ 2 = 2Hypothesis 3



conversions between types

• In C the operands of an expression must have the same type: what happens 
if we try to add an integer and a real?

3.0 + 2 =?

• C transforms the integer into a real (it is possible to force the 
opposite transformation, we will see it in the next slide):

3.0 + 2.0 = 5.0



conversions between types

Explicit type conversions can be forced (``coerced'') in any expression, with a 
unary operator called a cast.
In the construction
(type name) expression
the expression is converted to the named type by the conversion rules 
above.

The precise meaning of a cast is as if the expression were assigned to a 
variable of the specified type, which is then used in place of the whole 
construction.



conversions between types

13

For example, the library routine sqrt expects a double argument, and will 
produce nonsense if inadvertently handled something else.

So if n is an integer, we can use
sqrt((double) n)
to convert the value of n to double before passing it to sqrt



functions

14

In C, a function provides a convenient way to encapsulate some 
computation, which can then be used without worrying about its 
implementation. They encapsulate a set of instructions that can be executed 
repeatedly or as needed. With properly designed functions, it is possible to 
ignore how a job is done; knowing what is done is sufficient. C makes the 
use of functions easy, convenient and efficient.
Let’s write a function of our own.
C has no exponentiation operator, we will illustrate the mechanics of 
function definition by writing a function power(m,n) to raise an integer m to 
a positive integer power n.
Here is the function power and a main program to exercise it.



functions

15

#include <stdio.h>
int power(int m, int n);
/* test power function */
main()
{

int i;
for (i = 0; i < 10; ++i)
printf("%d %d %d\n", i, power(2,i), power(-3,i));
return 0;

}



functions

16

/* power: raise base to n-th power; n >= 0 */
int power(int base, int n)
{

int p =  1;
for (int i = 1; i <= n; ++i)

p = p * base;
return p;

}



functions

17

A function definition has this form:
return-type function-name(parameter declarations, if any)
{
declarations
statements
}

A function in C is defined using the return_type (the type of value the 
function returns), a function_name (an identifier for the function), and a list 
of parameters (input values, if any).
The first line of power itself,

int power(int base, int n)
declares the parameter types and names, and the type of the result that the 
function returns.



functions
Function definitions can appear in any order, and in one source file or 
several, although no function can be split between files.

The function body contains a sequence of statements that define the 
function's behavior. It can include variable declarations, calculations, and 
control structures like loops and conditionals.

To use a function, you call it by its name and pass any required arguments. 
The function executes its code and may return a value.
For example, the function power is called twice by main, in the line

printf("%d %d %d\n", i, power(2,i), power(-3,i));
Each call passes two arguments to power, which each time returns an 
integer to be formatted and printed.

18



functions

19

Parameters are variables defined in the function's declaration. Arguments 
are values passed to the function when it's called. The values of arguments 
are assigned to the parameters inside the function.
The declaration

int power(int base, int n);
just before main says that power is a function that expects two int
arguments and returns an int. This declaration, is called a function 
prototype.
Parameter names are optional in a function prototype, so for the prototype 
we could have written

int power(int, int);
Well-chosen names are good documentation, however, so better use them.



functions

20

The return statement is used to send a value back to the calling code. The 
return type in the function declaration specifies the type of value that the 
function can return.
The integer value that power computes is returned to main by the return 
statement. Any expression may follow return:

return expression;

A function needs not return a value. There can be a return statement at the 
end of main too. Since main is a function like any other, it may return a value 
to its caller, which is in effect the environment in which the program is 
executed. Typically, a return value of zero implies normal termination;
non-zero values signal unusual or erroneous termination conditions.



functions

21

• C provides a wide range of built-in library functions (e.g., printf, scanf, 
strlen) that simplify common tasks and can be used in your programs.

• Functions can call themselves, which is known as recursion. Recursive 
functions are often used to solve problems that can be broken down into 
smaller, similar subproblems.

• If a function doesn't need to return a value, you can specify void as the 
return type.



Arguments - Call by Value/Reference

22

In C, all function arguments are passed ``by value.'' This means that the 
called function is given the values of its arguments in temporary variables 
rather than the originals. This doesn't affect the original value outside the 
function.

To modify the original values of variables within a function, you can pass 
pointers to those variables. This allows you to achieve "pass by reference" 
behavior. The caller must provide the address of the variable to be set 
(technically a pointer to the variable), and the called function must declare 
the parameter to be a pointer and access the variable through it.



Arguments - Call by Value/Reference

23

In the case of arrays, when the name of an array is used as an argument, the 
value passed to the function is the location or address of the beginning of 
the array - there is no copying of array elements.

Functions can be used to encapsulate error-handling code, which helps keep 
the main program flow cleaner and more focused on the primary task.



Bitwise operators

24



Bitwise operators

Bitwise operators in C are used to perform operations at the bit level, allowing 
you to manipulate individual bits of data. These operators are essential for 
tasks like working with flags, setting or clearing specific bits, and optimizing 
memory usage. There are six bitwise operators in C: AND (&), OR (|), XOR (^), 
NOT (~), left shift (<<), and right shift (>>).

Bitwise AND (&):

The bitwise AND operator (&) performs a bitwise AND operation on each pair 
of corresponding bits of two integers. It returns a 1 if both bits are 1, 
otherwise, it returns 0.
1010 & 1101  1000

25



Bitwise operators

Bitwise OR (|):

The bitwise OR operator (|) performs a bitwise OR operation on each pair of 
corresponding bits of two integers. It returns a 1 if at least one of the bits is 1.
1010 | 1101  1111

Bitwise XOR (^):

The bitwise XOR operator (^) performs a bitwise XOR (exclusive OR) operation 
on each pair of corresponding bits of two integers. It returns a 1 if the bits are 
different, and 0 if they are the same.
1010 ^ 1101  0111

26



Bitwise operators
Bitwise NOT (~):

The bitwise NOT operator (~) inverts the bits of an integer. It changes 0s to 1s 
and 1s to 0s.
~1010 0101

Left Shift (<<):

The left shift operator (<<) shifts the bits of an integer to the left by a specified 
number of positions filling vacated bits with zero. Bits that are shifted out of 
the left side are discarded. It effectively multiplies the number by 2 raised to 
the power of the shift count.
1010 << 2  101000

27



Bitwise operators
Right Shift (>>):

The right shift operator (>>) shifts the bits of an integer to the right by a 
specified number of positions. It effectively divides the number by 2 raised to 
the power of the shift count.

• For unsigned integers, the leftmost bits are filled with zeros.
• For signed integers, the leftmost bits are filled with the sign bit (0 for 

positive values, 1 for negative values) to maintain the sign of the number.
1010 >> 2  10

28



Bitwise operators
Practical Use Cases:

Bitwise operators are commonly used for low-level programming, such as 
working with hardware registers, data compression, encryption, and image 
processing.
They are also used to optimize memory usage by packing multiple Boolean 
flags or options into a single integer, which saves space and speeds up access 
times.
Important Note:
Be cautious when working with bitwise operators, as incorrect usage can lead 
to unexpected results or undefined behavior. It's essential to understand how 
these operators work at the bit level and use them with care.

29



Input and Output

Input and output are not part of the C language itself.
We shall use the standard library, a set of functions that provide input and 
output, string handling, storage management, mathematical routines, and a 
variety of other services for C programs.
The library implements a simple model of text input and output. A text
stream consists of a sequence of lines; each line ends with a newline 
character.
The simplest input mechanism is to read one character at a time from the 
standard input, normally the keyboard, with getchar:

int getchar(void)

30



Input and Output
getchar returns the next input character each time it is called, or EOF when it 
encounters end of file. The symbolic constant EOF is defined in <stdio.h>.

In many operating systems, a file may be substituted for the keyboard by using 
the < convention for input redirection: if a program program uses getchar, 
then the command line program <infile causes program to read characters 
from infile instead of standard input.

The input may come also from another program via a pipe mechanism: on 
many systems, the command line otherprogram | program runs the two 
programs otherprogram and program and pipes the standard output of 
otherprogram into the standard input for program.

31



Input and Output

The function
int putchar(int)

is used for output: putchar(c) puts the character c on the standard output, 
which is by default the screen. putchar returns the character written, or EOF is 
an error occurs. Again, output can usually be directed to a file with >filename: 
if program uses putchar,

program >outfile
will write the standard output to outfile instead. If pipes are supported,

program | anotherprogram
puts the standard output of program into the standard input of 
anotherprogram.

32



Input and Output

Each source file that refers to an input/output library function must contain 
the line

#include <stdio.h>
before the first reference. When the name is bracketed by < and > a search is 
made for the header in a standard set of places (for example, on UNIX 
systems, typically in the directory /usr/include).

An example, considering the program lower, that converts its input to lower 
case.

33



Input and Output

#include <stdio.h>
#include <ctype.h>
main() /* lower: convert input to lower case*/
{
int c
while ((c = getchar()) != EOF)
putchar(tolower(c));
return 0;
}

The function tolower is defined in <ctype.h>; it converts an upper case letter 
to lower case and returns other characters untouched.

34



Input and Output
``functions'' like getchar and putchar in <stdio.h> and tolower in <ctype.h> are 
often macros, thus avoiding the overhead of a function call per character.
The output function printf translates internal values to characters. The 
declaration is

int printf(char *format, arg1, arg2, ...);
printf converts, formats, and prints its arguments on the standard output 
under control of the format. It returns the number of characters printed.
The function scanf is the input analog of printf, providing many of the same 
conversion facilities in the opposite direction. The declaration is

int scanf(char *format, ...);
scanf reads characters from the standard input, interprets them according to 
the specification in format, and stores the results through the remaining 
arguments.

35


	COMPUTER ENGINEERING LABORATORY
	Struct, arithmetic expressions evaluation, functions, bitwise operators, input and output hints
	Struct
	Struct
	Struct
	Struct
	Struct
	Struct
	Expression Evaluation Rules
	Expression Evaluation Rules
	conversions between types
	conversions between types
	conversions between types
	functions
	functions
	functions
	functions
	functions
	functions
	functions
	functions
	Arguments - Call by Value/Reference
	Arguments - Call by Value/Reference
	Bitwise operators
	Bitwise operators
	Bitwise operators
	Bitwise operators
	Bitwise operators
	Bitwise operators
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output

