
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it


Exercises: loops, arrays

2



Command-line Arguments

In environments that support C, there is a way to pass command-line arguments 
or parameters to a program when it begins executing.
Command-line arguments are a way to pass information to a C program from 
the command line when you run it. These arguments are commonly used for 
configuration, input data, or other parameters that affect how the program 
behaves. In C, command-line arguments are received as parameters to the main 
function.
When main is called, it is called with two arguments.
The first (conventionally called argc, for argument count) is the number of 
command-line arguments the program was invoked with; the second (argv, for 
argument vector) is a pointer to an array of character strings that contain the 
arguments, one per string.

3



Command-line Arguments

By convention, argv[0] is the name by which the program was invoked, so argc is 
at least 1.
If argc is 1, there are no command-line arguments after the program name.
Therefore command-line arguments are strings of characters that you provide 
when running a C program.
The main function has the following signature:

int main(int argc, char *argv[]);

You can access and process command-line arguments by using argc to 
determine the number of arguments and argv to access the argument values

4



Command-line Arguments

For example, to access the second command-line argument:

char *secondArg = argv[2];

To run a C program with command-line arguments, you typically execute it from 
the command line and provide the arguments after the program name:

$ ./myprogram arg1 arg2 arg3

In this example, myprogram is the name of the C program, and arg1, arg2, and 
arg3 are the command-line arguments.

5



Command-line Arguments

6

argv

myprogram

arg1

arg2

arg3

0

1

2

3

for (int i = 1; i < argc; i++)
printf("%s\t", argv[i]);



Command-line Arguments

Command-line arguments are commonly used for various purposes, such as 
specifying input files, configuration options, debugging flags, and any 
information that you want to pass to the program when it's executed.
They are especially useful when writing scripts or programs that need to be 
parameterized without modifying the source code.

When working with command-line arguments, it's essential to perform error 
checking to ensure that the expected number of arguments is provided and to 
handle invalid or missing arguments gracefully.

7



Exercise 1

Write the first 30 elements of a series defined as follows: the first three 
elements are worth 1, the subsequent ones (i>=4) are worth the sum of the 
elements i-1 and i-3

Some suggestions:
• you could use an array of integers or you could use 4 int variables

8



Exercise 2

Write a program that, given a number N>0 (at most 10) of different integer 
values provided as command-line arguments, prints on the screen the maximum 
and minimum of the inserted sequence, the position in which this value was 
inserted and the sequence ordered in ascending mode.

Some suggestions:
• use the function atoi (simpler) or strtol (more complete and robust) to 

convert the string arguments in integer values

9

for (int i = 1; i < argc; i++)
printf("%s\t", argv[i]);



Exercise 3

Given a string, transform it in a new string, in which every character is located 
OFFSET positions further in the alphabet
• The alphabet considered is:

• ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
• The alphabet is cyclical: after the 'z' there is the 'A'
• For example, with OFFSET = 4

• the character 'a' becomes 'e'
• the letter 'X' becomes 'b'
• the letter 'x' becomes 'B'

• The complexity of the program lies in the fact that in ASCII coding the 
sequences 'A'..'Z' and 'a'..'z' (the sequence of uppercase characters comes 
first) are not consecutive, but there is half another set of characters, so it is 
necessary to break the program into 2 ifs.

10


	COMPUTER ENGINEERING LABORATORY
	Exercises: loops, arrays
	Command-line Arguments
	Command-line Arguments
	Command-line Arguments
	Command-line Arguments
	Command-line Arguments
	Exercise 1
	Exercise 2
	Exercise 3

