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Lists
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Memory management

During previous week lessons

• We recalled the ways in which the C language manages memory (RAM) 
allocation

• We saw in particular static and automatic allocation

• We introduced dynamic memory allocation and the main C functions 
associated with it (malloc, calloc, realloc and free)
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Recap: memory allocation
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The term memory allocation is used to indicate 
the allocation of a block of RAM memory to be 
used by a program/process.

RAM memory can be allocated:
• Statically
• Automatically
• Dynamically
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Memory management

• The core of the dynamic memory allocation system in C consists of the 
functions:

• malloc()/calloc()/realloc(): (re)allocate a block of free memory

• free(): frees previously allocated memory

• These functions are defined in the <stdlib.h> library

• Dynamic allocation is fundamental in practice (memory needs are often not 
known a priori)

• This applies first and foremost to “simple” variables / data structures

• But it is essentially unavoidable for more advanced data structures (lists, trees, 
graphs, ...)
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The lists

• In C programming, a list is not a built-in data structure like in some other 
programming languages.

• However, you can implement a basic form of a list using structures and 
pointers.

• Lists, also known as linked lists, are a dynamic data structure in C that allow 
for the storage and manipulation of a collection of elements.

• Unlike arrays, linked lists don't have a fixed size and can grow or shrink 
during runtime.

• Each element in a linked list is represented by a node, and nodes are linked 
together using pointers. 
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The lists

• A list is a collection of elements, where each element contains a value and 
a reference (pointer) to the next element in the sequence. A list is a finite 
succession of elements of one type.

• The information encoded by the list concerns:
• The succession of elements (values)

• The order relationship between the elements themselves

• The list is qualified not only by the values it represents but also by the 
operations performed on it
• Insertion and deletion (head, tail, intermediate)

• Visit / search

• Initialization
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The lists
• We can obtain different types of lists by defining different methods of 

inserting/deleting elements
• stack: it is a LIFO type structure, i.e. “last in first out

• queue: it is a FIFO type structure, i.e. “first in first out”

• A list can be represented:
• In sequential form: the elements are represented in an array and their order is 

implicitly encoded by the position

• In linked form: in this case the relationship is made explicit and each element is 
associated with the information that identifies the successor (this can be an index or 
a pointer)

• A pointer-linked list is a succession of elements (nodes) connected by 
pointers
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linked lists vs. arrays

• Linked lists are dynamic structures and their size can increase/decrease at 
run time

• Arrays, on the other hand, have a pre-fixed size and can fill up
• The elements of an array are stored contiguously;

• + this allows immediate access to an item

• - but item insertions or deletions are slow

• The elements of a linked list, are "logically" in sequence, but will occupy non-
contiguous memory addresses
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Lists linked by means of pointers

• Linked lists do not offer immediate access to their items, but 
inserting/deleting items can follow different strategies
• LIFO, FIFO, in “generic” position

• The atomic element of a list is the node that can be defined by a “self-
referential” structure:
struct Node {

int data;
struct Node* next;

};

10

data nextListptr



Lists linked by means of pointers
Example / graphical representation of a linked list:

List of elements: {3, 5, …, 19}
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Functions defined on linked lists

• Using linked lists requires some basic functions definition:

• Initialization

• Visit (usually will print node values)

• Search for an item

• Insertion

• Cancellation

• Now we will start to

• develop insertion, visit, etc. functions on lists
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Functions defined on linked lists
• Let’s consider a basic structure of a node in a singly linked list:

struct Node {

int data;

struct Node* next;

};

• data: Holds the value of the node.

• next: A pointer to the next node in the sequence.

A linked list is formed by connecting these nodes together. The last node in 
the list points to NULL to indicate the end of the list.
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Functions defined on linked lists
• Initialization

// Initialize an empty list

struct Node* myList = NULL;
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Functions defined on linked lists
// Function to create a new node

struct Node* createNode(int value) {

struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

if (newNode == NULL) {

printf("Memory allocation failed\n");

}

else {

newNode->data = value;

newNode->next = NULL;

}

return newNode;

}
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Functions defined on linked lists
int main()

{

struct node *list = NULL;

struct newNode = NULL;

// ...

if ((newNode = createNode(17)) != NULL)

{

//…

}

// ...

}

16



Functions defined on linked lists

• Insertion

• Insertion at the beginning of the list

• Insertion at the end of the list

• Insertion in a certain position of the list
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Functions defined on linked lists

• Insertion at the beginning of the list
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void head_insert(struct Node **ptr,
 struct Node *newNode)
{

struct Node *tmp;

}

tmp = *ptr;

tmp

*ptr = newNode;

(*ptr)->next = tmp;



Functions defined on linked lists

• Insertion at the end of the list
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void tail_insert(struct Node **ptr,
 struct Node *newNode)
{

struct Node *tmp;

}

NULLtmp = *ptr;
while (tmp->next != NULL)
    tmp = tmp->next;
tmp->next = newNode;



Functions defined on linked lists

• Search for an item
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struct Node * searchItem(struct Node *head, int itemToSearch)
{

while ((head != NULL) && (head->data != itemToSearch))
head = head->next;

return(head);
}



Functions defined on linked lists
• Delete an item
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unsigned int deleteItem(struct Node *head, int itemToDelete)
{
 struct Node *prev = head;

while ((head != NULL) && (head->data != itemToDelete))
{

prev = head;
head = head->next;

}
if (head->data==itemToDelete)
{

prev->next = head->next;
free(head);
return(0); // item deleted

}
else

return(1);
}



Functions defined on linked lists
• Visit

// Function to print the elements of the list

void printList(struct Node* head) {

struct Node* current = head;

while (current != NULL) {

printf("%d ", current->data);

current = current->next;

}

printf("\n");

}
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Other types of lists

The list from the previous slides is called a one way linked list.

• One way lists are generally better than arrays.

• Many deletions and additions

• Fairly simple to manage

In the one way list presented earlier, we had no concern for order.

• Insert at the beginning

• Append at the end

An ordered list adds elements in order based on a key field of the record.

• Other types of lists give other benefits.
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Other types of lists
• A one way list has certain deficiencies.

• Can't visit any element from any other element

• Some list problems require additional pointers to provide additional 
efficiency.
• May have need for doubly linked list

• An editor with a linked list of lines

• May have a list where each element itself contains a head pointer for 
another list (a network)
• Linked airline flights with linked passengers

• Linked words in a file with linked line number, (i.e, a cross reference)
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Ordered lists

In the context of C programming, an "ordered list" typically refers to a 
collection of elements where the elements are arranged in a specific order 
based on a comparison function. The ordering could be ascending or 
descending, depending on the desired arrangement.

The term "ordered list" itself does not correspond to a specific built-in data 
structure in C. Instead, you might implement an ordered list using arrays or 
linked lists and ensure that the elements are inserted in the correct order.
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Ordered lists

Same as previous linked list except insertion is a function of a key field (int 
data for example). Elements are then in order.

Let’s consider a simple example of how you might implement an ordered list 
using a singly linked list in C. 
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Ordered lists
// Function to insert a node in an ordered list

struct Node* insertInOrder(struct Node* head, struct Node *newNode) {    

// If the list is empty or the new node should be inserted at the beginning

if (head == NULL || newNode->data < head->data) {

newNode->next = head;

return newNode;

}

// Traverse the list to find the correct position for the new node

struct Node* current = head;

while (current->next != NULL && current->next->data < newNode->data) {

current = current->next;

}
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// Insert the new node in the correct position

newNode->next = current->next;

current->next = newNode;

return head;

}



Functions defined on linked lists
• Insert an item
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unsigned int insertItem(struct Node *head, int itemToInsAfter, struct Node *toBeInserted)
{
 struct Node *tmp;

while ((head != NULL) && (head->data != itemToInsAfter))
head = head->next;

if (head->data== itemToInsAfter)
{

tmp = head->next;
head->next = toBeInserted;
 toBeInserted->next = tmp;
return(0); // item inserted

}
else

return(1);
}



Circular lists

• There are some basic differences between a circular list and a one 
directional list.

• There is no first element.

• There is no end of the list.

• There will be a current element.

• This is the starting point for the next list operation.

• Each element points to the next one.

• Circular lists are used heavily in memory management schemes.
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Two ways lists
• A two_way list structure needs two pointers.

• Two way lists allow processing in either direction.

• Can cut down access time
• Print from 20 to 50
• Print 16 and preceding 4
• Very often two way lists are also circular.

• The list has two pointers.

• Forward pointer link
• Backward pointer blink

• There are two print routines forward, backward.
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Nested lists
• There are many other kinds of linked lists applications.

• Consider a list of flights, each with a log of passengers.
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What are Lists?
• An element of a list is usually 

defined as a structure.
• A passenger

struct passenger {
char name[20];
int flight_no;
char seat[4];
};

• A job in an operating system
struct job {
int owner;
int priority;
char *files[20];
}; 32

• A window
struct window {
int x_upper_left;
int y_upper_left;
int x_lower_right;
int y_lower_right;
};



What are Lists?
• A list is a collection of (usually) like objects.

• passengers on an airline
• jobs in an operating system
• windows on a display

• Lists are usually dynamic.
• The number of elements in the list varies with time.
• There is no upper limit on the size of the list.

• Common list operations include:
• adding an element
• inserting an element
• deleting an element
• printing the list
• combining two lists
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Lists as arrays

• A list is a dynamic data structure. An array is fixed.

• This contradiction leads to inefficiencies in:
• Adding to the list

• what about when there is no more room?

• Deleting from a list

• moving too much data

• Combining two lists

• not room enough in either list

34



Lists as arrays

• An array can be used to represent a list.
• An array is a fixed size data type.

• Size is based on a worstcase scenario.

• The number of elements in the list would be kept in a separate variable.

• Array representation could lead to inefficiencies.
• Adding an element

• Since an array is a fixed data structure, there would be no way of extending it.

• Inserting an element

• All elements below the inserted one would need to be pushed down one 
element.
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Lists as arrays

• Deleting an element

• Each element needs to be moved up a position, or, the position of the deleted 
one could be marked with a special value.

• Combining two lists

• The sum of the number of elements from the two lists could be larger than the 
capacity for either array.

• A better representation than an array is a data structure, which is allocated 
only when it is needed.
• The need is usually signaled by a user request to the program.
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Benefits of Linked Lists

• Linking elements is a dynamic way of building lists.

• The problem of fixed size disappears.

• Deleting an element becomes a matter of pointer manipulation.

• Inserting an element also is a pointer manipulation problem.

• Combining two lists need not worry about size restriction.
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A list of linked elements

• Create the storage for an element when it is needed.
• Describe a template for any list element.

• Allocate as needed malloc.

• Leads to many allocations at various locations
• Provide an extra structure member, a pointer.

• Link each new allocation to previous ones.

• Insert append in order
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A list of linked elements

• Inserting or appending an element
• The problem of extending the array size disappears.

• Deleting an element
• There is no inefficiency involved as with an array.

• Combining two lists
• There is no concern about combined sizes.

• Modify one pointer.
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