
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it

Miscellaneous

2

Miscellaneous

• Switch-case statement

• Ternary statement

• Goto and labels

• Insights
• C Preprocessor, Pointers, Arrays, Structures

• Miscellaneous Functions

3

Testing conditions
C has the following conditional statements:
• Use if to specify a block of code to be executed, if a specified condition is

true
• Use else to specify a block of code to be executed, if the same condition is

false
• Use else if to specify a new condition to test, if the first condition is false

• Use switch to specify many alternative blocks of code to be executed

• Use the ternary operator as a shorthand way to write an if-else statement

4

Switch statement
The switch statement is a multi-way decision that tests whether an expression
matches one of a number of constant integer values, and branches
accordingly. It provides a way to streamline multiple if-else conditions when
the same variable or expression is being compared to different values.

switch (expression) {
case constant1:

// Code to be executed if expression matches constant1
break;

case constant2:
// Code to be executed if expression matches constant2
break;

// Additional cases as needed

default:
// Code to be executed if expression does not match any constant

}
5

Switch statement
• You can have any number of case statements within a switch. Each case is

followed by the value to be compared to and a colon.
• All case expressions must be different.
• Each case is labeled by one or more integer-valued constants or constant

expressions or enumerated types.
• The constant-expression for a case must be the same data type as the

variable in the switch, and it must be a constant or a literal.
• If a case matches the expression value, execution starts at that case until a

break statement is reached.
• When a break statement is reached, the switch terminates, and the flow of

control jumps to the next line following the switch statement. This will stop
the execution of more code and case testing inside the block.

6

Switch statement
• A break can save a lot of execution time because it "ignores" the execution

of all the rest of the code in the switch block
• Not every case needs to contain a break. If no break appears, the flow of

control will fall through to subsequent cases until a break is reached.
• The case labeled default is executed if none of the other cases are satisfied.

• A default is optional; if it isn't there and if none of the cases match, no action at all
takes place.

• Cases and the default clause can occur in any order.
• Falling through from one case to another is not robust, better avoiding it.
• As a matter of good form, put a break after the last case (usually the

default one) even though it’s logically unnecessary. If another case gets
added at the end, this break could save your program correctness.

7

Switch statement flowchart

8

Switch statement
Let's consider an example where we want to determine the day of the week
based on a numeric code. In this case, the numeric code represents the day of
the week, and we'll use a switch statement to handle different cases.

9

#include <stdio.h>
int main() {
 int dayCode = 3; // Example code for Wednesday
 switch (dayCode) {
 case 1:
 printf("Monday\n");
 break;
 case 2:
 printf("Tuesday\n");
 break;
 case 3:
 printf("Wednesday\n");
 break;

case 4:
printf("Thursday\n");
break;

case 5:
 printf("Friday\n");
 break;
 case 6:
 printf("Saturday\n");
 break;
 case 7:
 printf("Sunday\n");
 break;
 default:
 printf("Invalid day code\n");
 }
 return 0;
}

Switch statement
#include <stdio.h>

int main () {

/* local variable definition */
char grade = 'B';

switch(grade) {
case 'A' :

printf("Excellent!\n");
break;

case 'B' :
case 'C' :

printf("Well done\n");
break;

10

case 'D' :
printf("You passed\n");
break;

case 'F' :
printf("Better try again\n");
break;

default :
printf("Invalid grade\n");

}

printf("Your grade is %c\n", grade);

return 0;
}

Conditional or ternary operator ‘?:’

11

The statements
if (a > b)
z = a;
else
z = b;

compute in z the maximum of a and b. The conditional expression, written with
the ternary operator ``?:'', provides an alternate way to write this and similar
constructions. The conditional operator can be in the form
variable = expression1 ? expression2 : expression3;
or in the form
variable = (condition) ? expression2 : expression3;
or, simply,
expression1 ? expression2 : expression3;

Conditional or ternary operator ‘?:’

12

In the form
expression1 ? expression2 : expression3
the expression expression1 is evaluated first. If it is non-zero (true), then the
expression expression2 is evaluated, and that is the value of the conditional
expression. Otherwise expression3 is evaluated, and that is the value. Only one
of expression2 and expression3 is evaluated.
Thus to set z to the maximum of a and b, we can use the following statement
z = (a > b) ? a : b; /* z = max(a, b) */

Conditional or ternary operator ‘?:’

13

#include <stdio.h>

int main() {
int n1, n2;

printf("Enter two numbers: ");
scanf("%d %d", &n1, &n2);

// Using the ternary operator to check which number is greater
(n1 > n2) ? printf("%d > %d", n1, n2) : printf("%d > %d", n2, n1);

return 0;
}

Conditional or ternary operator ‘?:’

14

#include <stdio.h>

int main() {
int age;

printf("Enter your age: ");
scanf("%d", &age);

// Using the ternary operator to check if the person is a minor or not
const char* status = (age < 18) ? "minor" : "adult";
printf("You are: %s", status);

return 0;
}

Conditional or ternary operator ‘?:’

Advantages of Ternary Operators Over If-Else Statements

Ternary operators offer two main benefits over traditional if-else statements:

• They allow for more compact and efficient code.
• They can improve code readability by reducing the number of lines

needed.

However, whether or not to use ternary operators is ultimately a matter of
personal preference and coding style.

15

Goto and labels

The goto statement in C is a jump statement that allows the program's control
to jump to a labeled statement within the same function or block.

While the use of goto is generally discouraged due to its potential to create
complex and less readable code, and indeed the it is never necessary, and in
practice it is almost always easy to write code without it, the goto statement
can be employed in specific scenarios where other control flow structures are
not suitable.
The most common is to abandon processing in some deeply nested structure,
such as breaking out of two or more loops at once. The break statement
cannot be used directly since it only exits from the innermost loop.

16

Goto and labels
While this example might be better solved using other control structures, it
demonstrates the basic syntax of goto.

#include <stdio.h>
int main() {
 int i, j;
 for (i = 1; i <= 5; ++i) {
 for (j = 1; j <= 5; ++j) {
 if (i == 3 && j == 3) {
 // Use goto to break out of nested loops
 goto endLoop;
 }
 printf("%d %d\n", i, j);
 }
 }
 // Label to jump to
 endLoop:
 printf("Loop ended\n");

 return 0;
} 17

Goto syntax and flow diagram
The syntax for a goto statement in C is as follows −

goto label;
...
label: statement;

Here label can be any plain text except a C keyword and it can be set anywhere
in the C program above or below to goto statement.

18

Reasons to avoid goto

The use of goto statement may
lead to code that is buggy and
hard to follow. For example,

one:
for (i = 0; i < number; ++i)
{

test += i;
goto two;

}
two:
if (test > 5) {
goto three;

}
...

19

Should you use goto?
If you think the use of goto statement
simplifies your program, you can use it. That
being said, goto is rarely useful and you can
create any C program without using goto
altogether.

Here's a quote from Bjarne Stroustrup,
creator of C++, "The fact that 'goto' can do
anything is exactly why we don't use it."

The C preprocessor

20

C provides certain language facilities by means of a preprocessor, which is
conceptionally a separate first step in compilation. The two most frequently
used features are #include, to include the contents of a file during compilation,
and #define, to replace a token by an arbitrary sequence of characters.
File inclusion makes it easy to handle collections of #defines and declarations.
A macro substitution has the form

#define name replacement text
subsequent occurrences of the token name will be replaced by the replacement
text.
• All preprocessor commands begin with a hash symbol (#). It must be the first

nonblank character, and for readability, a preprocessor directive should
begin in the first column.

Preprocessor directives

21

Directive Description
#define Substitutes a preprocessor macro
#include Inserts a particular header from another file
#undef Undefines a preprocessor macro
#ifdef Returns true if this macro is defined

#ifndef Returns true if this macro is not defined
#if Tests if a compile time condition is true

#else The alternative for #if
#elif #else and #if in one statement

#endif Ends preprocessor conditional
#error Prints error message on stderr

Pointers
A pointer is a variable that holds the memory address of another variable.
Pointers can be used for storing addresses of dynamically allocated arrays and
for arrays that are passed as arguments to functions.

This size of the pointer is fixed and only depends upon the architecture of the
system.

A typical machine has an array of consecutively numbered or addressed
memory cells that may be manipulated individually or in contiguous groups.
One common situation is that any byte can be a char, a pair of one-byte cells
can be treated as a short integer, and four adjacent bytes form a long. A
pointer is a group of cells (often two or four) that can hold an address.

22

Pointers
So, if var is an int and p is a pointer that points to it, we could represent the
situation this way:

23

Pointers
The unary operator & gives the address of an object, so the statement

ptr = &var;
assigns the address of var to the variable ptr, and ptr is said to ``point to‘’ var.
The & operator only applies to objects in memory: variables and array
elements. It cannot be applied to expressions, constants, or register variables.

The unary operator * is the indirection or dereferencing operator; when
applied to a pointer, it accesses the object the pointer points to, so the
statement

newVar = *ptr;
assigns the value of the variable (var) pointed by ptr to the variable newVar.

24

Pointers
The declaration of the pointer ptr,

int *ptr;
is intended as a mnemonic; it says that the expression *ptr is an int.
If ptr points to the integer var, then *ptr can occur in any context where var
can, so

*ptr = *ptr + 10;
increments *ptr by 10.
The unary operators * and & bind more tightly than arithmetic operators, so
the assignment

newVar = *ptr + 1;
takes whatever ptr points at, adds 1, and assigns the result to newVar.

25

Pointers
*ptr += 1;

increments what ptr points to, as do
++*ptr;

and
(*ptr)++;

The parentheses are necessary in this last example; without them, the
expression would increment ptr instead of what it points to, because unary
operators like * and ++ associate right to left.
Finally, since pointers are variables, they can be used without dereferencing.
For example, if ptrNew is another pointer to int,

ptrNew = ptr;
copies the contents of ptr into ptrNew, thus making ptrNew point to whatever
ptr pointed to.

26

Pointers and functions arguments
Since C passes arguments to functions by value, there is no direct way for the
called function to alter a variable in the calling function.
The way to obtain the desired effect is for the calling program to pass pointers
to the values to be changed as in scanf function arguments

scanf("%d", &var);
Pointer arguments enable a function to access and change objects in the
function that called it.

27

in caller in scanf

var ptr

Pointers and arrays
In C, there is a strong relationship between pointers and arrays, strong enough
that pointers and arrays should be discussed simultaneously. Any operation
that can be achieved by array subscripting can also be done with pointers. The
pointer version will in general be faster but somewhat harder to understand.
The declaration

int a[10];
defines an array of size 10, that is, a block of 10 consecutive objects named
a[0], a[1], ...,a[9].

28

a:
a[0] a[1] a[9]

Pointers and arrays
The notation a[i] refers to the i-th element of the array. If pa is a pointer to an
integer, declared as

int *pa;
then the assignment

pa = &a[0];
sets pa to point to element zero of a; that is, pa contains the address of a[0].

29

a:
a[0] a[1] a[9]

pa: The assignment
x = *pa;
will copy the contents of a[0] into x.

Pointers and arrays
If pa points to a particular element of an array, then by definition pa+1 points
to the next element, pa+i points i elements after pa, and pa-i points i elements
before. Thus, if pa points to a[0],

*(pa+1)
refers to the contents of a[1], pa+i is the address of a[i], and *(pa+i) is the
contents of a[i].

30

a:
a[0] a[1] a[9]

pa+1:pa:

Pointers and arrays

These remarks are true regardless of the type or size of the variables in the
array a.
The meaning of ``adding 1 to a pointer,'' and by extension, all pointer
arithmetic, is that pa+1 points to the next object, and pa+i points to the i-th
object beyond pa whichever is the data type of the element pointed by pa.
By definition, the value of a variable or expression of type array is the address
of element zero of the array. Thus, after the assignment

pa = &a[0];
pa and a have identical values.
Since the name of an array is a synonym for the location of the initial element,
the assignment pa=&a[0] can also be written as

pa = a;
31

Pointers and arrays
Rather more surprising is the fact that a reference to a[i] can also be written as
*(a+i).
In evaluating a[i], C converts it to *(a+i); the two forms are equivalent, that’s
a[i] == *(a+i)
Applying the operator & to both parts of this equivalence, it follows that &a[i]
and a+i are also identical, therefore a+i is the address of the i-th element
beyond a.
As a consequence of this equivalence, if pa is a pointer, expressions might use
it with a subscript; pa[i] is identical to *(pa+i).

In short, an array-and-index expression is equivalent to one written as
pointer and offset.

32

Pointers and arrays
There is one main difference between an array name and a pointer that must
be kept in mind.

• A pointer is a variable, so pa=a and pa++ are legal.
• But an array name is not a variable, therefore, constructions like a=pa and

a++ are illegal.

When an array name is passed to a function, what is passed is the location of
the initial element. Within the called function, this argument is a local variable,
and so an array name parameter is a pointer, that is, a variable containing an
address.

33

Pointers and arrays

When an array name is passed to a function, the function can at its
convenience believe that it has been handed either an array or a pointer, and
manipulate it accordingly. It can even use both notations if it seems
appropriate and clear.
It is possible to pass part of an array to a function, by passing a pointer to the
beginning of the subarray.
For example,

f(&a[5]);
or

f(a+5);
both pass to the function f the address of the subarray that starts at a[5].

34

Pointers and arrays
Within f, the parameter declaration can be

f(int arr[]) { ... }
or

f(int *arr) { ... }

So as far as f is concerned, the fact that the parameter refers to part of a larger
array is of no consequence.
Moreover, if one is sure that the elements exist, it is also possible to index
backwards in an array; p[-1], p[-2], and so on are syntactically legal, and refer
to the elements that immediately precede p[0]. But it is illegal to refer to
objects that are not within the array bounds.

35

Address Arithmetic
C is consistent and regular in its approach to address arithmetic; its integration
of pointers, arrays, and address arithmetic is one of the strengths of the
language.

If p is a pointer to some element of an array, then p++ increments p to point to
the next element, and p+=i increments it to point i elements beyond where it
currently does.

In general a pointer can be initialized just as any other variable can, though
normally the only meaningful values are zero or an expression involving the
address of previously defined data of appropriate type.

36

Address Arithmetic
Being a an array of char of a certain size, the declaration

static char *pa = a;
defines pa to be a character pointer and initializes it to point to the beginning
of a. This could also have been written

static char *pa = &a[0];
since the array name is the address of the zeroth element.

C guarantees that zero is never a valid address for data, so a return value of
zero can be used to signal an abnormal event occurred in functions returning
address values that’s pointers.

37

Address Arithmetic
Pointers and integers are not interchangeable. Zero is the sole exception: the
constant zero may be assigned to a pointer, and a pointer may be compared
with the constant zero.
The symbolic constant NULL is often used in place of zero, as a mnemonic to
indicate more clearly that this is a special value for a pointer. NULL is defined in
<stdio.h>.
If pa and qa point to members of the same array, then relations like ==, !=,
<, >=, etc., work properly. For example,
p < q
is true if p points to an earlier element of the array than q does. Any pointer
can be meaningfully compared for equality or inequality with zero.

38

Address Arithmetic
The behavior is undefined for arithmetic or comparisons with pointers that do
not point to members of the same array.
(There is one exception: the address of the first element past the end of an
array can be used in pointer arithmetic.)
We have already observed that a pointer and an integer may be added or
subtracted. The construction
pa + n
means the address of the n-th object beyond the one pa currently points to.
This is true regardless of the kind of object pa points to; n is scaled according to
the size of the objects pa points to, which is determined by the declaration of
pa. If an int is four bytes, for example, the int will be scaled by four.

39

Address Arithmetic
Pointer subtraction is also valid: if p and q point to elements of the same array,
and p<q, then q-p+1 is the number of elements from p to q inclusive. This fact
can be used to write a simple version of strlen:

/* strlen: return length of string s */
int strlen(char *s)
{

char *p = s;
while (*p != '\0')

p++;
return p - s;

}

40

Address Arithmetic
Pointer subtraction is also valid: if p and q point to elements of the same array,
and p<q, then q-p+1 is the number of elements from p to q inclusive. This fact
can be used to write a simple version of strlen:

/* strlen: return length of string s */
int strlen(char *s)
{

char *p = s;
while (*p != '\0')

p++;
return p - s;

}

41

Address Arithmetic summary
The valid pointer operations are
• assignment of pointers of the same type,
• adding or subtracting a pointer and an integer,
• subtracting or comparing two pointers to members of the same array,
• assigning or comparing to zero.
All other pointer arithmetic is illegal.

It is not legal to add two pointers, or to multiply or divide or shift or mask
them, or to add float or double to them, or even, except for void *, to assign a
pointer of one type to a pointer of another type without a cast.

42

Character pointers and functions

A string constant, written as
"I am a string"
is an array of characters. The length in storage is one more than the number of
characters between the double quotes, because in the internal representation,
the array is terminated with the null character '\0’.
The most common occurrence of string constants is as arguments to functions
printf("hello, world\n");
When a character string like this appears in a program, access to it is through a
character pointer; indeed printf receives a pointer to the beginning of the
character array.
Therefore, a string constant is accessed by a pointer to its first element.

43

Character pointers and functions

If pmessage is declared as
char *pmessage;

then the statement
pmessage = “I am a string";

assigns to pmessage a pointer to the character array.
This is not a string copy; only pointers are involved.
There is an important difference between these definitions:

char amessage[] = “I am a string"; /* an array */
char *pmessage = " I am a string "; /* a pointer */

amessage is an array, just big enough to hold the sequence of characters and
'\0' that initializes it. Individual characters within the array may be changed but
amessage will always refer to the same storage.

44

Character pointers and functions

On the other hand, pmessage is a pointer, initialized to point to a string
constant; the pointer may subsequently be modified to point elsewhere, but
the result is undefined if you try to modify the string contents.

45

I am a string\0

I am a string\0

amessage:

pmessage:

Character pointers and functions

Let’s consider the function is strcpy(s,t), which copies the string t to the string
s. It would be nice just to say s=t but this copies the pointer, not the
characters. To copy the characters, we need a loop.

/* strcpy: copy t to s; array subscript version */
void strcpy(char *s, char *t)
{

int i = 0;

while ((s[i] = t[i]) != '\0')
i++;

}
46

Character pointers and functions

Because arguments are passed by value, strcpy can use the parameters s and t
in any way it prefers. In the next code they are conveniently initialized
pointers, which are marched along the arrays a character at a time, until the
'\0' that terminates t has been copied into s.

/* strcpy: copy t to s; pointer version */
void strcpy(char *s, char *t)
{

while ((*s = *t) != '\0') {
s++;
t++;

}
} 47

Character pointers and functions

Really, the function would likely be written as

/* strcpy: copy t to s; pointer version */
void strcpy(char *s, char *t)
{

while (*s++ = *t++)
;

}

48

Pointer Arrays; Pointers to Pointers

Since pointers are variables themselves, they can be stored in arrays just as
other variables can.
Therefore we can define arrays of pointers, that are equivalent to pointers to
pointers.

49

STRING1

STRING2

STRING3

Multi-dimensional Arrays

C provides rectangular multi-dimensional arrays, although in practice they are
much less used than arrays of pointers.
In C, a two-dimensional array is really a one-dimensional array, each of whose
elements is an array. Hence subscripts are written as
vector[i][j] /* [row][col] */
rather than
vector[i,j] /* WRONG */
Elements are stored by rows, so the rightmost subscript, or column,
varies fastest as elements are accessed in storage order.
An array is initialized by a list of initializers in braces; each row of a two-
dimensional array is initialized by a corresponding sub-list.

50

Multi-dimensional Arrays

static char daytab[2][13] = {
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

If a two-dimensional array is to be passed to a function, the parameter
declaration in the function must include the number of columns; the number
of rows is irrelevant, since what is passed is, as before, a pointer to an array of
rows, where each row is an array of 13 ints.

In this particular case, it is a pointer to objects that are arrays of 13 ints. Thus if
the array daytab is to be passed to a function f, the declaration of f would be:

f(int daytab[2][13]) { ... }
51

Multi-dimensional Arrays

Thus if the array daytab is to be passed to a function f, the declaration of f
would be:

f(int daytab[2][13]) { ... }
It could also be

f(int daytab[][13]) { ... }
since the number of rows is irrelevant, or it could be

f(int (*daytab)[13]) { ... }
which says that the parameter is a pointer to an array of 13 integers. The
parentheses are necessary since brackets [] have higher precedence than *.
Without parentheses, the declaration

int *daytab[13]
is an array of 13 pointers to integers.

52

Multi-dimensional Arrays

More generally, only the first dimension (subscript) of an array is free; all the
others have to be specified.

How initialization of Pointer Arrays can be managed?

/* month_name: name of n-th month */
static char *month_name[] = {

"Illegal month", "January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"

};

53

Multi-dimensional Arrays

The declaration of month_name is an array of character pointers. The initializer
is a list of character strings; each is assigned to the corresponding position in
the array.
The characters of the i-th string are placed somewhere, and a pointer to them
is stored in month_name[i].
Since the size of the array name is not specified, the compiler counts the
initializers and fills in the correct number.

What about the difference between a two-dimensional array and an array of
pointers?

54

Multi-dimensional Arrays

Given the definitions
int a[10][20];
int *b[10];
then a[3][4] and b[3][4] are both syntactically legal references to a single int.
But a is a true two-dimensional array: 200 int-sized locations have been set
aside, and the conventional rectangular subscript calculation 20 * row +col is
used to find the element a[row][col]. For b, however, the definition only
allocates 10 pointers and does not initialize them; initialization must be done
explicitly, either statically or with code.
The important advantage of the pointer array is that the rows of the array may
be of different lengths.

55

Multi-dimensional Arrays

That is, each element of b need not point to a twenty-element vector; some
may point to two elements, some to fifty, and some to none at all.
The most frequent use of arrays of pointers is to store character strings of
different lengths

56

Illegal month\0

January

February

Pointers to functions

Pointers to functions in C allow you to store the address of a function in a
variable, providing a way to call a function indirectly through the pointer. This
feature is powerful and often used in scenarios where functions need to be
passed as arguments to other functions or stored in data structures.

Declaration:
return_type (*pointer_name)(parameter_types);

• return_type: The return type of the function.
• pointer_name: The name of the pointer to the function.
• parameter_types: The types of parameters the function takes.

57

Pointers to functions
Example:

int (*addPointer)(int, int); /* Pointer to a function that takes two integers
and returns an integer */

Initialization:
pointer_name = &function_name;

• &function_name: The address-of operator is used to get the address of the
function.

58

Pointers to functions
Example:

int add(int a, int b) {
return a + b;

}
int (*addPointer)(int, int) = &add; /* Initializing the pointer with the address
of the 'add' function */

Function call through pointer
return_type result = pointer_name(arg1, arg2, ...);
• arg1, arg2, ...: Arguments passed to the function through the pointer.
Example:

int result = (*addPointer)(3, 4); /* Calling the 'add' function through the
pointer */

59

Pointers to functions

#include <stdio.h>

// Function to add two integers
int add(int a, int b) {
 return a + b;
}

// Function to subtract two integers
int subtract(int a, int b) {
 return a - b;
}

60

int main() {
 // Declare pointers to functions
 int (*operationPointer)(int, int);

 // Initialize pointers with addresses of functions
 operationPointer = &add;
 printf("Result of add: %d\n", (*operationPointer)(5, 3));

 operationPointer = &subtract;
 printf("Result of subtract: %d\n",
(*operationPointer)(5, 3));

 return 0;
}

In this example, two functions (add and
subtract) are defined. Pointer to functions
(operationPointer) is declared, initialized
with the addresses of these functions, and
used to call the functions indirectly.

Dinamic memory allocation
Dynamic memory allocation in C is the process of allocating memory during the
execution of a program. It allows you to allocate memory at runtime, and it's
managed using pointers.

Dynamic memory allocation is achieved using three key functions: malloc(),
calloc(), and realloc().

Memory allocated dynamically needs to be explicitly deallocated using the
free() function to prevent memory leaks.

61

malloc() (Memory Allocation)
The malloc function in C (memory allocation) is used to dynamically allocate a
specified number of bytes of memory during program execution. It stands for
"memory allocation." This function is part of the <stdlib.h> library.
Syntax:

void *malloc(size_t size);
• size_t: Unsigned integer type used for sizes.
• size: Number of bytes to allocate.

Usage:
int *arr = (int *)malloc(5 * sizeof(int));

Allocates space for an array of 5 integers.
The result is cast to int * because malloc returns a generic void * pointer.

62

malloc() (Memory Allocation)
Return Value:
If the memory allocation is successful, malloc returns a pointer to the
beginning of the allocated memory.
If the allocation fails (usually due to insufficient memory), it returns NULL.

Check for Allocation Failure:
if (arr == NULL) {

printf("Memory allocation failed\n");
return 1;

63

calloc() (Contiguous Allocation)
The calloc function in C (contiguous allocation) is used to dynamically allocate a
specified number of blocks of memory, each of a specified size, during program
execution. It is part of the <stdlib.h> library, just like malloc. The key difference
between malloc and calloc is that calloc initializes the allocated memory to
zero.

Syntax:
void *calloc(size_t num_elements, size_t element_size);

• num_elements: Number of elements to allocate.
• element_size: Size of each element in bytes.

64

calloc() (Contiguous Allocation)
Return Value:
If the memory allocation is successful, calloc returns a pointer to the beginning
of the allocated memory.
If the allocation fails (usually due to insufficient memory), it returns NULL.

Usage:
int *arr = (int *)calloc(5, sizeof(int));

Allocates space for an array of 5 integers and initializes them to zero.
The result is cast to int * because calloc returns a generic void * pointer.

65

calloc() (Contiguous Allocation)
Check for Allocation Failure:

if (arr == NULL) {
printf("Memory allocation failed\n");
return 1;

66

realloc() (Reallocation)

The realloc function in C (reallocation) is used to dynamically change the size of
a previously allocated block of memory during program execution. It allows
you to resize the memory allocated by malloc or calloc. The function is part of
the <stdlib.h> library.

Syntax:
void *realloc(void *ptr, size_t new_size);

• ptr: Pointer to the previously allocated memory.
• new_size: New size in bytes.

67

realloc() (Reallocation)
Return Value:
If the reallocation is successful, realloc returns a pointer to the beginning of the
reallocated memory.
If the reallocation fails (usually due to insufficient memory), it returns NULL.
The original memory block remains unchanged in this case.

Usage:
int *arr = (int *)malloc(5 * sizeof(int));
// ... use arr ...
arr = (int *)realloc(arr, 10 * sizeof(int));

Changes the size of the previously allocated array to accommodate 10 integers.

68

realloc() (Reallocation)
Check for Reallocation Failure:

if (arr == NULL) {
printf("Memory reallocation failed\n");
free(arr); // Free the previously allocated memory
return 1;

It's important to check if the reallocation was successful, as it may fail due to
insufficient memory.

69

free() (Deallocation)
The free function in C is used to deallocate memory that was previously
allocated dynamically using functions like malloc, calloc, or realloc. It is part of
the <stdlib.h> library.
Syntax:

void free(void *ptr);
• ptr: Pointer to the dynamically allocated memory.

Usage:
int *arr = (int *)malloc(5 * sizeof(int));
// ... use arr ...
free(arr);

Deallocates the dynamically allocated memory pointed to by arr.

70

free() (Deallocation)
Return Value:
free doesn't return any value.

After calling free, the memory is released, and the pointer should not be used
further. Always ensure that the pointer being passed to free is the same as the
one returned by the memory allocation functions, and it has not been
deallocated earlier.

71

Example of memory management
#include <stdio.h>
#include <stdlib.h>

int main() {
// Dynamic memory allocation using malloc
int *arr1 = (int *)malloc(5 * sizeof(int));
if (arr1 == NULL) {

printf("Memory allocation failed\n");
return 1;

}

// Dynamic memory allocation using calloc
int *arr2 = (int *)calloc(5, sizeof(int));
if (arr2 == NULL) {

printf("Memory allocation failed\n");
free(arr1); // Free the previously allocated memory
return 1;

}
72

// Reallocate memory using realloc
arr1 = (int *)realloc(arr1, 10 * sizeof(int));
if (arr1 == NULL) {

printf("Memory reallocation failed\n");
free(arr2); // Free the previously allocated memory
return 1;

}

// Deallocate memory using free
free(arr1);
free(arr2);

return 0;
}

free() (Deallocation)
In this example:

malloc and calloc are used to allocate memory for integer arrays.
realloc is used to resize the array allocated by malloc.
free is used to deallocate the dynamically allocated memory.
Check for the success of memory allocation to handle potential failures.

73

	COMPUTER ENGINEERING LABORATORY
	Miscellaneous
	Miscellaneous
	Testing conditions
	Switch statement
	Switch statement
	Switch statement
	Switch statement flowchart
	Switch statement
	Switch statement
	Conditional or ternary operator ‘?:’
	Conditional or ternary operator ‘?:’
	Conditional or ternary operator ‘?:’
	Conditional or ternary operator ‘?:’
	Conditional or ternary operator ‘?:’
	Goto and labels
	Goto and labels
	Goto syntax and flow diagram
	Reasons to avoid goto
	The C preprocessor
	Preprocessor directives
	Pointers
	Pointers
	Pointers
	Pointers
	Pointers
	Pointers and functions arguments
	Pointers and arrays
	Pointers and arrays
	Pointers and arrays
	Pointers and arrays
	Pointers and arrays
	Pointers and arrays
	Pointers and arrays
	Pointers and arrays
	Address Arithmetic
	Address Arithmetic
	Address Arithmetic
	Address Arithmetic
	Address Arithmetic
	Address Arithmetic
	Address Arithmetic summary
	Character pointers and functions
	Character pointers and functions
	Character pointers and functions
	Character pointers and functions
	Character pointers and functions
	Character pointers and functions
	Pointer Arrays; Pointers to Pointers
	Multi-dimensional Arrays
	Multi-dimensional Arrays
	Multi-dimensional Arrays
	Multi-dimensional Arrays
	Multi-dimensional Arrays
	Multi-dimensional Arrays
	Multi-dimensional Arrays
	Pointers to functions
	Pointers to functions
	Pointers to functions
	Pointers to functions
	Dinamic memory allocation
	malloc() (Memory Allocation)
	malloc() (Memory Allocation)
	calloc() (Contiguous Allocation)
	calloc() (Contiguous Allocation)
	calloc() (Contiguous Allocation)
	realloc() (Reallocation)
	realloc() (Reallocation)
	realloc() (Reallocation)
	free() (Deallocation)
	free() (Deallocation)
	Example of memory management
	free() (Deallocation)

