
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it

Queues, Stacks, Trees

2

Agenda

 Stacks

 Queues

 Trees

3

Stack data structure
What is Stack?
Stack is a linear data structure that follows a particular order in which the
operations are performed. The order is LIFO (Last In First Out). LIFO implies that
the element that is inserted last, comes out first.
A stack is a linear data structure in which the insertion of a new element and
removal of an existing element takes place at the same end represented as the
top of the stack.
To implement the stack, it is required to maintain the pointer to the top of the
stack, which is the last element to be inserted because we can access the
elements only on the top of the stack.
There are many real-life examples of a stack. Consider an example of plates
stacked over one another in the canteen. It can be simply seen to follow LIFO
(Last In First Out) order.

4

Stack – LIFO strategy

5

This
strategy
states
that the
element
that is
inserted
last will
come
out first.

Basic operation on Stack
In order to make manipulations in a
stack, there are certain operations.

 push() to insert an element into
the stack

 pop() to remove an element from
the stack

 top() Returns the top element of
the stack.

 isEmpty() returns true if stack is
empty else false.

 size() returns the size of stack.

6

Basic operation on Stack
 Push:
 Adds an item to the stack. If the stack is full, then it is said to be an

Overflow condition.
 Pop:
 Removes an item from the stack. The items are popped in the reversed

order in which they are pushed. If the stack is empty, then it is said to be
an Underflow condition.

 Top:
 Returns the top element of the stack.

 isEmpty:
 Returns true if the stack is empty, else false.

Time complexity: O(1)
7

Types of Stacks

 Fixed Size Stack:
 As the name suggests, a fixed size stack has a fixed size and cannot grow

or shrink dynamically. If the stack is full and an attempt is made to add an
element to it, an overflow error occurs. If the stack is empty and an
attempt is made to remove an element from it, an underflow error
occurs.

 Dynamic Size Stack:
 A dynamic size stack can grow or shrink dynamically. When the stack is

full, it automatically increases its size to accommodate the new element,
and when the stack is empty, it decreases its size. This type of stack is
implemented using a linked list, as it allows for easy resizing of the stack.

8

Implementation of Stack

A stack can be implemented using an array or a linked list.

In an array-based implementation, the push operation is implemented by
incrementing the index of the top element and storing the new element at that
index. The pop operation is implemented by decrementing the index of the top
element and returning the value stored at that index.

In a linked list-based implementation, the push operation is implemented by
creating a new node with the new element and setting the next pointer of the
current top node to the new node. The pop operation is implemented by
setting the next pointer of the current top node to the next node and returning
the value of the current top node.

9

Implementing Stack using arrays

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

// A structure to represent a stack
struct Stack {

int top;
unsigned capacity;
int* array;

};

10

Implementing Stack using arrays

// function to create a stack of given capacity. It initializes size of stack as 0
struct Stack* createStack(unsigned capacity)
{

struct Stack* stack = (struct Stack*)malloc(sizeof(struct Stack));
stack->capacity = capacity;
stack->top = -1;
stack->array = (int*)malloc(stack->capacity * sizeof(int));
return stack;

}

11

Implementing Stack using arrays

// Stack is full when top is equal to the last index
bool isFull(struct Stack* stack)
{

return stack->top == stack->capacity - 1;
}

// Stack is empty when top is equal to -1
bool isEmpty(struct Stack* stack)
{

return stack->top == -1;
}

12

Implementing Stack using arrays

// Function to add an item to stack. It increases top by 1
void push(struct Stack* stack, int item)
{

if (isFull(stack))
return;

stack->array[++stack->top] = item;
printf("%d pushed to stack\n", item);

}

13

Implementing Stack using arrays

// Function to remove an item from stack. It decreases top by 1
int pop(struct Stack* stack)
{

if (isEmpty(stack))
return INT_MIN;

return stack->array[stack->top--];
}

14

Implementing Stack using arrays

// Function to return the top from stack without removing it
int peek(struct Stack* stack)
{

if (isEmpty(stack))
return INT_MIN;

return stack->array[stack->top];
}

15

Implementing Stack using arrays

// Program to test above functions
int main()
{

struct Stack* stack = createStack(100);

push(stack, 10);
push(stack, 25);
push(stack, 5);
push(stack, 15);
printf("%d popped from stack\n", pop(stack));

return 0;
} 16

Implementing Stack using arrays

 Advantages of array implementation:
 Easy to implement.
 Memory is saved as pointers are not involved.

 Disadvantages of array implementation:
 It is not dynamic i.e., it doesn’t grow and shrink depending on needs at

runtime.
 The total size of the stack must be defined beforehand.

17

Implementing Stack using linked lists
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

// A structure to represent a stack
struct StackNode {

int data;
struct StackNode* next;

};

int isEmpty(struct StackNode* head)
{

return(!head);
} 18

Implementing Stack using linked lists

void push(struct StackNode** head, struct StackNode* newNode)
{

newNode->next = *head;
*head = newNode;
printf("%d pushed to stack\n", newNode->data);

}

19

Implementing Stack using linked lists

int pop(struct StackNode** head)
{

if (isEmpty(* head))
return INT_MIN;

struct StackNode* tmp = * head;
* head = (* head)->next;
int popped = tmp->data;
free(tmp);

return popped;
}

20

Implementing Stack using linked lists

int peek(struct StackNode* head)
{

if (isEmpty(head))
return INT_MIN;

return head->data;
}

21

Implementing Stack using linked lists

22

Implementing Stack using linked lists

23

Implementing Stack using linked lists

24

Implementing Stack using linked lists

 Advantages of Linked List implementation:
 The linked list implementation of a stack can grow and shrink according

to the needs at runtime.
 It is used in many virtual machines like JVM.

 Disadvantages of Linked List implementation:
 Requires extra memory due to the involvement of pointers.
 Random accessing is not possible in stack.

25

Stack exercise

Write a program that reads in a sequence of characters and prints them in
reverse order. Use a stack managed by a linked list.

esicrexe ysae

• listInizialization
• createNode
• push
• push

26

Monotonic stack
What is a Monotonic Stack?
A monotonic stack is a stack whose elements are monotonically increasing or
decreasing. It contains all qualities that a typical stack has and its elements are
all monotonic decreasing or increasing.

The monotonic stack maintains monotonicity while popping elements when a
new item is pushed into the stack.

27

Monotonic stack
A stack is called a monotonic stack if all the elements starting from the bottom
of the stack is either in increasing or in decreasing order.

There are 2 types of monotonic stacks:

• Monotonic Increasing Stack
• Monotonic Decreasing Stack

Monotonic Increasing Stack is a stack in which the elements are in increasing
order from the bottom to the top of the stack.

Example: 1, 3, 10, 15, 17
28

Monotonic stack
Monotonic Decreasing Stack is a stack in which its elements are in decreasing
order from the bottom to the top of the stack.

Example: 17, 14, 10, 5, 1

29

Queue data structure
What is Queue Data Structure?
A Queue is defined as a linear data structure that is open at both ends and the
operations are performed in First In First Out (FIFO) order.

We define a queue to be a list in which all additions to the list are made at one
end, and all deletions from the list are made at the other end. The element
which is first pushed into the order is the one on which the operation is first
performed.

30

Queue data structure

31

Queue data structure
FIFO Principle of Queue:
A Queue is like a line waiting to purchase tickets, where the first person in line
is the first person served. Position of the entry in a queue ready to be served,
that is, the first entry that will be removed from the queue, is called the front or
head of the queue, similarly, the position of the last entry in the queue, that is,
the one most recently added, is called the rear or tail of the queue. See the
below figure.

32

Queue data structure
A queue is a linear data structure that is open at both ends and the operations
are performed in First In First Out (FIFO) order.

We define a queue to be a list in which all additions to the list are made at one
end, and all deletions from the list are made at the other end. The element
which is first pushed into the order, the delete operation is first performed on
that.

33

Array Representation of Queue
Queues can be represented in an array. Variables used in such case are

 Queue: the name of the array storing queue elements.
 Front: the index where the first element is stored in the array representing

the queue.
 Rear: the index where the last element is stored in an array representing the

queue.

34

Array Representation of Queue
// A structure to represent a queue
struct Queue {

int front, rear, size;
unsigned capacity;
int* array;

};

35

Array representation of Queue
// function to create a queue of given capacity initializing size of queue as 0
struct Queue* createQueue(unsigned capacity)
{

struct Queue* queue
= (struct Queue*)malloc(sizeof(struct Queue));

queue->capacity = capacity;
queue->front = queue->size = 0;
queue->rear = capacity - 1;
queue->array = (int*)malloc(queue->capacity * sizeof(int));
return queue;

}

36

Array representation of Queue
// Queue is full when size becomes equal to the capacity
int isFull(struct Queue* queue)
{

return (queue->size == queue->capacity);
}

// Queue is empty when size is 0
int isEmpty(struct Queue* queue)
{

return (queue->size == 0);
}

37

Array representation of Queue
Enqueue() operation in Queue adds (or stores) an element to the end of the
queue.
The following steps should be taken to enqueue (insert) data into a queue:

1. Check if the queue is full.
2. If the queue is full, return overflow error and exit.
3. If the queue is not full, increment the rear pointer to point to the next

empty space.
4. Add the data element to the queue location, where the rear is pointing.
5. Return success.

38

Array representation of Queue
// Function to add an item to the queue changing rear and size
void enqueue(struct Queue* queue, int item)
{

if (isFull(queue))
return;

queue->rear = (queue->rear + 1) % queue->capacity;
queue->array[queue->rear] = item;
queue->size = queue->size + 1;
printf("%d enqueued to queue\n", item);

}

39

Array representation of Queue
Dequeue() operation removes (or access) the first element from the queue.
The following steps are taken to perform the dequeue operation:

1. Check if the queue is empty.
2. If the queue is empty, return the underflow error and exit.
3. If the queue is not empty, access the data where the front is pointing.
4. Increment the front pointer to point to the next available data element.
5. Then return success.

40

Array representation of Queue
// Function to remove an item from queue changing front and size
int dequeue(struct Queue* queue)
{

if (isEmpty(queue)) {
printf("\nQueue is empty\n");
return;

}
int item = queue->array[queue->front];
queue->front = (queue->front + 1) % queue->capacity;
queue->size = queue->size - 1;
return item;

}
41

Array representation of Queue
front() operation returns the element at the front end without removing it.

// Function to get front of queue
int front(struct Queue* queue)
{

if (isempty(queue))
return INT_MIN;

return queue->arr[queue->front];
}

42

Array representation of Queue
rear() operation returns the element at the rear end without removing it.

// Function to get rear of queue
int rear(struct Queue* queue)
{

if (isEmpty(queue))
return INT_MIN;

return queue->array[queue->rear];
}

43

Array representation of Queue
int main()
{

struct Queue* queue = createQueue(1000);

enqueue(queue, 16);
enqueue(queue, 22);
enqueue(queue, 30);
enqueue(queue, 13);

printf("%d dequeued from queue\n", dequeue(queue));
printf("Front item is %d\n", front(queue));
printf("Rear item is %d\n", rear(queue));

return 0;
}

44

Linked lists representation of Queue
A queue can also be represented using following entities:

• Linked-lists
• Pointers
• Structures

// A linked list (LL) node to store a queue entry
struct QNode {

int data;
struct QNode* next;

};

45

Linked lists representation of Queue
/* The queue, front stores the front node of LL and rear stores the last node of
LL */
struct Queue {

struct QNode *front, *rear;
};

// A utility function to create a new LL node.
struct QNode* newNode(int k)
{

struct QNode* tmp = (struct QNode*)malloc(sizeof(struct QNode));
tmp->data = k;
tmp->next = NULL;
return tmp;

} 46

Linked lists representation of Queue
// A utility function to create an empty queue
struct Queue* createQueue()
{

struct Queue* q = (struct Queue*)malloc(sizeof(struct Queue));
q->front = q->rear = NULL;
return q;

}

47

Linked lists representation of Queue
// The function to add a data k to q
void enQueue(struct Queue* q, int k)
{

// Create a new LL node
struct QNode* tmp = newNode(k);

// If queue is empty, then new node is front and rear both
if (q->rear == NULL) {

q->front = q->rear = tmp;
return;

}

// Add the new node at the end of queue and change rear
q->rear->next = tmp;
q->rear = tmp;

} 48

Linked lists representation of Queue
// Function to remove a key from given queue q
void deQueue(struct Queue* q)
{

// If queue is empty, return NULL.
if (q->front == NULL)

return;

// Store previous front and move front one node ahead
struct QNode* tmp = q->front;

q->front = q->front->next;

// If front becomes NULL, then change rear also as NULL
if (q->front == NULL)

q->rear = NULL;

free(tmp);
}

49

Linked lists representation of Queue
int main()
{

struct Queue* q = createQueue();
enQueue(q, 10);
enQueue(q, 20);
deQueue(q);
deQueue(q);
enQueue(q, 30);
enQueue(q, 40);
enQueue(q, 50);
deQueue(q);
printf("Queue Front : %d \n", ((q->front != NULL) ? (q->front)->data : -1));
printf("Queue Rear : %d", ((q->rear != NULL) ? (q->rear)->data : -1));
return 0;

}

50

Queue exercise

Write a program that reads in a sequence of characters and prints them in
reading order. Use a queue managed by a linked list.

• queueInizialization
• createNode
• enQueue
• deQueue

51

Tree data structures
 Tree is a set of elements (nodes) on which a "descent" relationship is

defined with two properties:
 There is a single node, called the root, which has no predecessors
 Every other node has a unique predecessor

 Nodes that have no successors are called leaves

 The tree is divided into levels and the nodes that are neither the root nor a
leaf are called intermediate nodes

52

Tree data structures

53

t

u v

x zy

L0

L1

L2

• t is the root node
• v is an intermediate node
• u, x, y, z are leaves
• The tree is divided into three

levels and therefore has a depth
of 2

• Node v achieves the maximum
output degree (equal to 3)

Tree data structures

54

 In the characterization of a tree the following are relevant:
 Exit degree of a node = number of its direct successors
 Depth = distance of a node from the root (which by definition has depth 0)
 By "extension", the depth of a tree is given by the max depth of the

nodes that compose it
 The set of nodes at the same depth forms a level
 A tree is said to be balanced when at any node the depth of the subtrees

differs by at most 1

Tree data structures

55

 The same operations performed on a list can be performed on a tree
(with some differences)

 On a tree there is not a single terminal node, but multiple leaves

 The insertion into the queue must be qualified with a selection
criterion of which leaf is the target of the operation
 Insertion at the head (or in an intermediate position) tends to

degenerate the tree towards a sequential shape; so, insertions are
typically made on leaves

Binary tree data structures

56

 Binary Tree is defined as a tree data structure where each node has at
most 2 children. Since each element in a binary tree can have only 2
children, we typically name them the left and right child.

A Binary tree is represented by a pointer to the
topmost node (commonly known as the “root”) of
the tree. If the tree is empty, then the value of the
root is NULL. Each node of a Binary Tree contains
the following parts:
1.Data
2.Pointer to left child
3.Pointer to right child

Binary tree data structures

57

 Basic operations on binary tree data structures
 Inserting an element.
 Removing an element.
 Searching for an element.
 Traversing the tree.

 Auxiliary operations on binary tree data structures
 Finding the height of the tree
 Finding the level of a node of the tree
 Finding the size of the entire tree.

Binary search tree data structures

58

We are interested in a particular type of binary tree data structures.
 A binary search tree is a tree data structure that allows the user to

store elements in a sorted manner. It is called a binary tree because
each node can have a maximum of two children and is called a search
tree because we can search for a number in O(log(n)) time.

The properties of a binary search tree are:
 All nodes in the left subtree have a value less than the root node
 All nodes in the right subtree have a value more than the root node
 Both subtrees of each node are also binary search trees, i.e. they have

the above two properties

Binary search tree data structures

59

The diagram below demonstrates two binary search trees, one follows all
the properties of a binary search tree, while the other violates the rule.

The binary tree on the
right isn't a binary
search tree because
the right subtree of
node 3 contains a value
smaller than it.

Binary tree data structures

60

In C, we can represent a binary tree node using structures. Below is an example
of a tree node with integer data.

// Structure of each node of the tree

struct node {
int data;
struct node* left_child;
struct node* right_child;

};

Search operation

61

In search, we have to find a specific element in the data structure. This
searching operation becomes simpler in binary search trees because here
elements are stored in sorted order.
Algorithm for searching an element in a binary tree is as follows:
1. Compare the element to be searched with the root node of the tree.
2. If the value of the element to be searched is equal to the value of the

root node, return the root node.
3. If the value does not match, check whether the value is less than the

root element or not and if it is then traverse the left subtree.
4. If larger than the root element, traverse the right subtree.
5. If the element is not found in the whole tree, return NULL.

Search operation

62

Let’s search for an item having a value of 20.
Step 2:Step 1:

Search operation

63

Search for an item having a value of 20.

Step 3:

Search operation

64

// searching operation
struct node* search(struct node * root, int x) {

if (root == NULL || root->data == x) //if root->data is x then the element is found
return root;

else if (x > root->data) // x is greater, so we will search the right subtree
return search(root->right_child, x);

else //x is smaller than the data, so we will search the left subtree
return search(root->left_child, x);

}

Insert operation

65

Inserting an element in a binary search tree is always done at the leaf node.
To perform insertion in a binary search tree, we start our search operation
from the root node, if the element to be inserted is less than the root value
or the root node, then we search for an empty location in the left subtree,
else, we search for the empty location in the right subtree.

Let’s insert an
item having a
value of 65.

Insert operation

66

Binary tree data structures

67

/* newNode() allocates a new node with the given data and NULL left and right pointers. */
struct node* newNode(int data)
{

// Allocate memory for new node
struct node* node = (struct node*)malloc(sizeof(struct node));

// Assign data to this node
node->data = data;

// Initialize left and right children as NULL
node->left_child = NULL;
node->right_child = NULL;
return (node);

}

Insert operation

68

// insertion
struct node* insert(struct node * root, int x) {

//searching for the place to insert
if (root == NULL)

return newNode(x);
else if (x > root->data) // x is greater. Should be inserted to the right

root->right_child = insert(root->right_child, x);
else // x is smaller and should be inserted to left

root->left_child = insert(root->left_child, x);
return root;

}

Deletion operation

69

In the deletion operation, we have to delete a node from the binary search
tree in a way that does not violate its properties. Deletion can occur in three
possible cases:

1. Node to be deleted is the leaf node
2. Node to be deleted has a single child node
3. The node to be deleted has two children

Deletion operation

70

Node to be deleted is the leaf node.
This is the simplest case of deleting a node in a binary search tree. Here, we
will replace the leaf node with NULL and free the allocated space.
Let’s try to delete the node having a value of 90.

Deletion operation

71

Node to be deleted has a single child node
In this case, we will replace the target node with its child and then delete that
replaced child node. This means that the child node will now contain the
value to be deleted. So, we will just replace the child node with NULL and
free up the allocated space.

In the next slide example, we have to delete a node having a value of 79, and
this node to be deleted has only one child, so it will be replaced with its child
55.

Deletion operation

72

Node to be deleted has a single child node

Deletion operation

73

The node to be deleted has two children
This case is complex as compared to the previous two. We follow the below
steps to delete the node:

 We will find the inorder successor of the target node, which has to be
deleted

 Now, replace this node with the successor until the target node is at the
leaf

 Replace the target node with NULL and free up the allocated space

In the following example, we have to delete node 45, which is the root node,
so first, it will be replaced with its in-order successor, which is 55. Now, node
45 will be at the leaf of the tree so that it can be deleted easily.

Deletion operation

74

In this example, we have to delete node 45, which is the root node, so first, it
will be replaced with its in-order successor, which is 55. Now, node 45 will be
at the leaf of the tree so that it can be deleted easily.

Deletion operation

75

// deletion
struct node* delete(struct node * root, int x) {

//searching for the item to be deleted
if (root == NULL)

return NULL;
if (x->root->data)

root->right_child = delete(root->right_child, x);
else if (x < root->data)

root->left_child = delete(root->left_child, x);
else {

//No Child node
if (root->left_child == NULL && root->right_child == NULL) {

free(root);
return NULL;

}

Deletion operation

76

//One Child node
else if (root->left_child == NULL || root->right_child == NULL) {

struct node *tmp;
if (root->left_child == NULL)

tmp = root->right_child;
else

tmp = root->left_child;
free(root);
return tmp;

}

Deletion operation

77

//Two Children
else {

struct node *tmp = find_minimum(root->right_child);
root->data = tmp->data;
root->right_child = delete(root->right_child, tmp->data);

}
}
return root;

}

Deletion operation

78

//function to find the minimum value in a node
struct node* find_minimum(struct node * root) {

if (root == NULL)
return NULL;

else if (root->left_child != NULL)
// node with minimum value will have no left child
return find_minimum(root->left_child);

// left most element will be minimum
return root;

}

Deletion operation

79

// Inorder Traversal
void inorder(struct node *root) {

if (root != NULL) // checking if the root is not null
{

inorder(root->left_child); // traversing left child
printf(" %d ", root->data); // printing data at root
inorder(root->right_child); // traversing right child

}
}

	COMPUTER ENGINEERING LABORATORY
	Queues, Stacks, Trees
	Agenda
	Stack data structure
	Stack – LIFO strategy
	Basic operation on Stack
	Basic operation on Stack
	Types of Stacks
	Implementation of Stack
	Implementing Stack using arrays
	Implementing Stack using arrays
	Implementing Stack using arrays
	Implementing Stack using arrays
	Implementing Stack using arrays
	Implementing Stack using arrays
	Implementing Stack using arrays
	Implementing Stack using arrays
	Implementing Stack using linked lists
	Implementing Stack using linked lists
	Implementing Stack using linked lists
	Implementing Stack using linked lists
	Implementing Stack using linked lists
	Implementing Stack using linked lists
	Implementing Stack using linked lists
	Implementing Stack using linked lists
	Stack exercise
	Monotonic stack
	Monotonic stack
	Monotonic stack
	Queue data structure
	Queue data structure
	Queue data structure
	Queue data structure
	Array Representation of Queue
	Array Representation of Queue
	Array representation of Queue
	Array representation of Queue
	Array representation of Queue
	Array representation of Queue
	Array representation of Queue
	Array representation of Queue
	Array representation of Queue
	Array representation of Queue
	Array representation of Queue
	Linked lists representation of Queue
	Linked lists representation of Queue
	Linked lists representation of Queue
	Linked lists representation of Queue
	Linked lists representation of Queue
	Linked lists representation of Queue
	Queue exercise
	Tree data structures
	Tree data structures
	Tree data structures
	Tree data structures
	Binary tree data structures
	Binary tree data structures
	Binary search tree data structures
	Binary search tree data structures
	Binary tree data structures
	Search operation
	Search operation
	Search operation
	Search operation
	Insert operation
	Insert operation
	Binary tree data structures
	Insert operation
	Deletion operation
	Deletion operation
	Deletion operation
	Deletion operation
	Deletion operation
	Deletion operation
	Deletion operation
	Deletion operation
	Deletion operation
	Deletion operation
	Deletion operation

