
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it

Socket programming

2

The client-server model

In modern operating systems, the services available on the network are mainly
based on the client/server model. This architecture allows systems to share
resources and cooperate to achieve an objective through the presence of two
categories of subjects, service programs, called servers, which receive requests
and provide responses, and user programs, called clients.
A server is (normally) able to respond to more than one client, so it is possible
that many programs can interact simultaneously. What distinguishes the model,
however, is that the architecture of the interaction is always in terms of many
towards one, the server, who comes to take on a privileged role.
All the fundamental services of the Internet follow this model, such as web
pages, e-mail, ftp, telnet, and practically every service that is provided over the
network.

3

 Computer Network
 hosts, routers, communication channels

■ Hosts run applications
■ Routers forward information
■ Packets: sequence of bytes

■ contain control information
■ e.g. destination host

■ Protocol is an agreement
■ meaning of packets
■ structure and size of packets

e.g. Hypertext Transfer Protocol (HTTP)

Host

Router

Communication
channel

The client-server model

■ Several protocols for different problems
 Protocol Suites or Protocol Families: TCP/IP

■ TCP/IP provides end-to-end connectivity specifying how data should be
 formatted,
 addressed,
 transmitted,
 routed, and
 received at the destination

■ can be used in the internet and in stand-alone private networks
■ it is organized into layers

Protocol Families -TCP/IP

* image is taken from “http://en.wikipedia.org/wiki/TCP/IP_model”

*

FTP, SMTP, …

Transport Layer
TCP or UDP

Network Layer
IP

Communication
Channels

Protocol Families -TCP/IP

http://en.wikipedia.org/wiki/TCP/IP_model
http://en.wikipedia.org/wiki/TCP/IP_model

The sockets

Concerning system programming, there is the socket interface which provides a
user-friendly abstraction of the basic mechanisms for implementing
client/server programs. A socket (“socket”) is a communication end between
processes.
Socket Programming is a method to connect two nodes over a network to
establish a means of communication between those two nodes. A node
represents a computer or a physical device with an internet connection. A
socket is the endpoint used for connecting to a node. The signals required to
implement the connection between two nodes are sent and received using the
sockets on each node respectively.

7

Local Area Network Addresses - IPv4

Local Area Network Addresses - IPv4

■ The 32 bits of an IPv4 address are broken into 4 octets, or 8 bit fields (0-255 value in decimal
notation).

TCP vs UDP
■ Both use port numbers
 application-specific construct serving as a communication endpoint
 16-bit unsigned integer, thus ranging from 0 to 65535
 to provide end-to-end transport

■ UDP: User Datagram Protocol
 no acknowledgements
 no retransmissions
 out of order, duplicates possible
 connectionless, i.e., app indicates destination for each packet

■ TCP: Transmission Control Protocol
 reliable byte-stream channel (in order, all arrive, no duplicates)

■ similar to file I/O
 flow control
 connection-oriented
 bidirectional

■ TCP is used for services with a large data capacity, and a persistent
connection

■ UDP is more commonly used for quick lookups, and single use
query-reply actions.

■ Some common examples of TCP and UDP with their default ports:

DNS lookup UDP 53
FTP TCP 21
HTTP TCP 80
SNMP UDP 161
Telnet TCP 23
DHCP UDP 67/68

TCP vs UDP

■ Universally known as Sockets
■ It is an abstraction through which an application may send and

receive data
■ Provide generic access to interprocess communication services
■ Standard API for networking

Host

Application

Socket

TCP

IP

Host

Application

Socket

TCP

IP

Router

IPChannel Channel

Berkley Sockets

Sockets

internal data structure

Family: AF_INET
Service: SOCK_STREAM

Local_IP:
Remote_IP:
Local_Port:

Remote_Port:
…

 Uniquely identified by
 an internet address
 an end-to-end protocol (e.g. TCP or UDP)
 a port number

 Two types of (TCP/IP) sockets
 Stream sockets (e.g. uses TCP)
 provide reliable byte-stream service

 Datagram sockets (e.g. uses UDP)
 provide best-effort datagram service
 messages up to 65.500 bytes

 Socket extend the convectional UNIX I/O facilities
 file descriptors for network communication
 the read and write system calls are extended

The client-server model

Servers are normally divided into two main categories, and are called
concurrent or iterative, based on their behavior.
• An iterative server responds to the request by sending data and remains

busy and does not respond to further requests until it has provided a
response to the request. Once the response is complete the server becomes
available again.

• A concurrent server, instead, when processing the request, creates a child
process (or a thread) responsible for providing the requested services, to
immediately wait for further requests. In this way, with multitasking
systems, multiple requests can be satisfied simultaneously. Once the child
process has finished its work it is usually terminated, while the original
server always remains active.

13

Client and server model state diagram
• The nodes are divided into two types, server node and

client node.
• The client node sends the connection signal and the server

node receives the connection signal sent by the client
node.

• The connection between a server and client node is
established using the socket over the transport layer of the
internet.

• After a connection has been established, the client and
server nodes can share information between them using
the read and write commands.

• After sharing of information is done, the nodes terminate
the connection.

14

Server stages

Different stages must be performed on the server node to receive a connection
sent by the client node.
 Socket creation
 Setsockopt
 Bind
 Listen
 Accept
 Send and receive data. There are a number of ways to do this, but the

simplest is to use the read() and write() / send() system calls.

15

Client stages

The client-side sends the connection requests to the server-side. To send these
requests several stages have to be performed on the client side too.
 Socket Connection
 Connect
 Send and receive data. There are a number of ways to do this, but the

simplest is to use the read() and write() / send() system calls.

16

Server stages

 Socket creation
The first stage deals with the creation of a socket, which is the basic component
for sending or receiving signals between nodes. The sys/socket.h header has the
necessary functions to create a socket in C. In socket programming in C, a socket
can be created by the socket() function with syntax,

int socket(int domain, int type, int protocol);

example

int server_fd = socket(AF_INET, SOCK_STREAM, 0);

17

Server stages
int socket(int domain, int type, int protocol);

The domain represents the address family over which the communication will be
performed. The domain is pre-fixed values present in the sys/socket.h header.
Some domains are,
 AF_LOCAL or AF_UNIX is used for local communication or in the case where

the client and server are on the same node. These sockets are called UNIX
domain sockets.

 AF_INET is used to represent the IPv4 address of the client to which a
connection should be made. Similarly, AF_INET6 is used for IPv6 addresses.
These sockets are called internet domain sockets.

 AF_BLUETOOTH is used for low-level Bluetooth connection.

18

Server stages

int socket(int domain, int type, int protocol);

The type represents the type of communication used in the socket. Some mostly
used types of communication are,
 SOCK_STREAM uses the TCP (Transmission Control Protocol) to establish a

connection. This type provides a reliable byte stream of data flow and is a
connection-based protocol. These sockets are called stream sockets.

 SOCK_DGRAM uses the UDP (User Datagram Protocol) which is unreliable
and a connectionless protocol. These sockets are also called datagram
sockets.

19

Server stages

int socket(int domain, int type, int protocol);

The protocol represents the protocol used in the socket. This is represented by a
number. When there is only one protocol in the protocol family, the protocol
number will be 0, or else the specific number for the protocol has to be
specified.

The socket() function creates a socket and returns a file descriptor which
represents an open file that will be utilized by the socket in reading and writing
operations and the file descriptor is used to represent the socket in later stages.
In case of an error in creating the socket, -1 is returned by the socket() function.

20

Server stages

 Setsockopt
The setsockopt() function in socket programming in C is used to specify some
options for the socket to control the behavior of the socket. The syntax is,

int setsockopt(int socket_descriptor, int level, int option_name, const void
*value_of_option, socklen_t option_length);

example

int opt = 1;
setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));

21

Server stages

int setsockopt(int socket_descriptor, int level, int option_name, const void
*value_of_option, socklen_t option_length);

The socket is the file descriptor returned by the socket() function.

The level parameter represents the level at which the option for the socket must
be applied. The SOL_SOCKET represents the socket level and IPPROTO_TCP
represents the TCP level.

22

Server stages

int setsockopt(int socket_descriptor, int level, int option_name, const void
*value_of_option, socklen_t option_length);

The option_name specifies the rules or options that should be modified for the
socket. Some useful options are,
 SO_DEBUG is used to enable the recording of debugging information.
 SO_REUSEADDR is used to enable the reusing of local addresses in the bind()

function.
 SO_SNDBUF is used to set the maximum buffer size that can be sent using the

socket connection.
 SO_LINGER is used to set that socket lingers on close.

23

Server stages

int setsockopt(int socket_descriptor, int level, int option_name, const void
*value_of_option, socklen_t option_length);

The option_value is used to specify the value for the options set in the
option_name parameter.

The option_length is the length of the variable used to set the option value.

The function returns a value of 0 of data type int on the successful application of
the option and a value of -1 on failure.

24

Server stages

 Bind
The bind() function in socket programming in C is used to assign an address to a
socket created using the socket() function. The syntax of bind() function is,

int bind(int socket_descriptor , const struct sockaddr *address, socklen_t
length_of_address);

The socket_descriptor is the value of the file descriptor returned by the socket()
function.

25

Server stages
int bind(int socket_descriptor , const struct sockaddr *address, socklen_t
length_of_address);

The address is a structure of type sockaddr. We usually use a structure of type
sockaddr_in to represent this information, because information such as port and
address can only be stored in this structure. The sockaddr_in is cast to the
sockaddr data type when calling the bind() function.

The length_of_address represents the size of the address passed as the second
parameter.

The function returns 0 on binding the address and port successfully or returns -1
on failure.

26

Server stages
int bind(int socket_descriptor , const struct sockaddr *address, socklen_t
length_of_address);

example

struct sockaddr_in address;
socklen_t addrlen = sizeof(address);

address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(PORT);
bind(server_fd, (struct sockaddr*)&address, sizeof(address));

27

Server stages

 Listen
The listen() function in socket programming is used to make the server node
wait and listen for connections from the client node on the port and address
specified by the bind() function. The syntax is,

int listen(int socket_descriptor, int back_log);

The socket_descriptor represents the value of the file descriptor returned by the
socket() function.

28

Server stages

 int listen(int socket_descriptor, int backlog);

The backlog marks the maximum number of connection requests that can be
made to the server by client nodes at a time. The number of requests made
after the number specified by backlog may cause an error or will be ignored by
the server if the options for retransmission are set.

The function returns 0 on listening on the address and port specified or returns
-1 on failure.

example

listen(server_fd, 3);
29

Server stages

 Accept
The accept() function is used to establish a connection between the server and
the client nodes for the transfer of data. This call typically blocks until a client
connects with the server. The syntax is,

int accept(int socket_descriptor, struct sockaddr *restrict address, socklen_t
*restrict length_of_address);

The socket_descriptor represents the value of the file descriptor returned by the
socket() function.

30

Server stages

int accept(int socket_descriptor, struct sockaddr* address, socklen_t*
length_of_address);

The address is the variable of the sockaddr_in structure in which the address of
the socket returned from the function will be stored.

The length_of_address depicts the size of the address parameter.

The accept() function creates a new socket from the first connection request for
the specified socket_descriptor and returns the file descriptor of the new socket.
The file descriptor of this new socket is used in the read() and write() functions
to send and receive data to and from the client node.

31

Server stages

int accept(int socket_descriptor, struct sockaddr* address, socklen_t*
length_of_address);

example

struct sockaddr_in clientAddr;
socklen_t addrSize = sizeof (clientAddr);

nw_socket = accept(server_fd, (struct sockaddr_in*)&clientAddr, &addrSize));

32

Server stages
 read
The read() function is used to receive data between client and server. The syntax
of read() function is,

ssize_t read(int socket_descriptor, void *buffer, size_t size);

The socket_descriptor represents the value of the socket descriptor returned by
the accept() function.

The buffer represents the memory location where the data read is stored.

The size represents the maximum number of data bytes that can be stored in
buffer.

33

Server stages
The read() function, on success, returns the number of bytes read (zero indicates
end of stream). It is not an error if this number is smaller than the number of
bytes requested. On error, -1 is returned, and errno is set to indicate the error.

example

ssize_t valread;
char buffer[1024];
valread = read(nw_socket, buffer, 1024 - 1);
// subtract 1 for the null terminator at the end

34

Server stages
 write
The write() function is used to send data between client and server. The syntax
of write() function is,

ssize_t write(int socket_descriptor, void *buffer, size_t count);

The socket_descriptor represents the value of the socket descriptor returned by
the accept() function.

The buffer represents the memory location where the data to be sent is stored.

The count represents the number of data bytes that are stored in buffer.

35

Server stages
The write() function, on success, returns the number of bytes written. On error,
the function write() returns -1, and errno is set to indicate the error.

example

char hello[] = "Hello from server";
write(nw_socket, hello, strlen(hello));

36

Server stages

 close
The close() function deallocates the socket descriptor passed as argument. To
deallocate means to make the socket descriptor available for return by
subsequent calls to socket(). The syntax is close() function is

int close(socket_descriptor);

The socket_descriptor represents the value of the socket descriptor returned
by the socket() or by the accept() function.

Upon successful completion, close() function returns 0; otherwise, -1 and errno
is set to indicate the error.

37

Client stages

 Socket Connection
Similar to the server-side, the client-side also needs to create a socket using the
socket() function. This will create a socket that can send the connection request
to the server. The client can connect the socket to the address of the server
using the connect() system call.

// Create client socket
cliSoc = socket (AF_INET, SOCK_STREAM, 0);
if (cliSoc < 0) {

perror ("Error in socket creation");
exit (1);

}
38

Client stages
 Connect
The connect() function is used to send the connection request and connect to
the server node. The syntax of the function is,

int connect(int socket_descriptor, const struct sockaddr *address, socklen_t
length_of_address);

The socket_descriptor represents the value of the file descriptor returned by the
socket() function during the creation of a socket on the client-side.

The address represents the structure with the information of the address and
port number of the server node to which the connection is to be made.

39

Client stages

int connect(int socket_descriptor, const struct sockaddr *address, socklen_t
length_of_address);

The length_of_address is the size of the address structure used in the second
parameter.

// Set server address parameters
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (PORT);
serverAddr.sin_addr.s_addr = inet_addr (SERVER_IP);
// Connect to the server
if (connect (cliSoc , (struct sockaddr*) & serverAddr, sizeof (serverAddr)) < 0) {

perror("Error in connecting to server");
exit (1);

} 40

Client stages
int connect(int socket_descriptor, const struct sockaddr *address, socklen_t
length_of_address);

The connect() function returns a value of 0 on successfully connecting with the
server and returns a value of -1 on error or the connection fails.

Similar to the server-side, the client-side also can invoke the read() and write()
functions to send and receive data between client and server and the close()
function to close the socket stream.

Let’s see an implementation in which one hello message is exchanged between
server and client to demonstrate the AF_INET client/server model.

41

Concurrent server stages

A concurrent server, as said, when processing the request, creates a child
process (or a thread) responsible for providing the requested services, to
immediately wait for further requests.

pid_t pid = fork();
if (pid == 0) {

// Child process
close (serverSocket);
// receive messages from the client, read() and send() functions invocation

}
else if (pid > 0) {

// Parent process
close(clientSocket);

} 42

Using AF_UNIX address family

43

Sockets that use the AF_UNIX
address family can be connection-
oriented (type SOCK_STREAM) or
connectionless (type SOCK_DGRAM).

Both types are reliable because there
are no external communication
functions connecting the two
processes.

Using AF_UNIX address family

44

Socket flow of events for a server application that uses AF_UNIX address family.

The socket() API returns a socket descriptor, which represents an endpoint. The
statement also identifies the UNIX address family with the stream transport
(SOCK_STREAM) being used for this socket. You can also use the socketpair()
API to initialize a UNIX socket.

After the socket descriptor is created, the bind() API gets a unique name for
the socket.

Using AF_UNIX address family

45

The name space for UNIX domain sockets consists of path names. When a
sockets program calls the bind() API, an entry is created in the file system
directory. If the path name already exists, the bind() fails. Thus, a UNIX domain
socket program should always call an unlink() API to remove the directory entry
when it ends.

The listen() allows the server to accept incoming client connections.

The server uses the accept() function to accept an incoming connection
request. The accept() call will block indefinitely waiting for the incoming
connection to arrive.

Using AF_UNIX address family

46

The recv() API receives data from the client application.

The send() API send data back to the client.

The close() API closes any open socket descriptors.

The unlink() API removes the UNIX path name from the file system.

Using AF_UNIX address family

47

Socket flow of events for a client application that uses AF_UNIX address family

The socket() API returns a socket descriptor, which represents an endpoint. The
statement also identifies the UNIX address family with the stream transport
(SOCK_STREAM) being used for this socket. You can also use the socketpair()
API to initialize a UNIX socket.

After the socket descriptor is received, the connect() API is used to establish a
connection to the server.

The send() API sends data bytes to the server.

Using AF_UNIX address family

48

The recv() API receives data bytes back from the server.

The close() API closes any open socket descriptors.

Let’s see an implementation in which one hello message is exchanged between
server and client to demonstrate the AF_UNIX client/server model.

Some useful functions

49

#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

void freeaddrinfo(struct addrinfo *ai);

Some useful functions

50

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

The getaddrinfo() function translates the name of a service location (for
example, a host name) and/or a service name and returns a set of socket
addresses and associated information to be used in creating a socket with
which to address the specified service.

The nodename and servname arguments are either null pointers or pointers to
null-terminated strings. One or both of these two arguments must be a non-
null pointer.

Some useful functions

51

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

If the nodename argument is not null, it can be a descriptive name or can be an
address string. Address strings using Internet standard dot notation are valid if
the specified address family is AF_INET or AF_UNSPEC.
If nodename is not null, the requested service location is named by nodename;
otherwise, the requested service location is local to the caller.

Some useful functions

52

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

If servname argument is null, the call returns network-level addresses for the
specified nodename. If servname is not null, it is a null-terminated character
string identifying the requested service. This can be either a descriptive name
or a numeric representation suitable for use with the address family or
families. If the specified address family is AF_INET, AF_INET6 or AF_UNSPEC,
the service can be specified as a string specifying a decimal port number.

Some useful functions

53

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

The addrinfo structure used by getaddrinfo() contains the following fields:

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

Some useful functions

54

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

If the argument hints is not null, it refers to a structure containing input values
that may direct the operation by providing options and by limiting the returned
information to a specific socket type, address family and/or protocol. In this
hints structure every member other than ai_flags, ai_family, ai_socktype and
ai_protocol must be zero or a null pointer.

Some useful functions

55

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

ai_family
This field specifies the desired address family for the returned addresses.
Valid values for this field include AF_INET and AF_INET6. The value
AF_UNSPEC indicates that getaddrinfo() should return socket addresses for
any address family (either IPv4 or IPv6, for example) that can be used with
node and service.

Some useful functions

56

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

ai_socktype
This field specifies the preferred socket type, for example SOCK_STREAM or
SOCK_DGRAM. Specifying 0 in this field indicates that socket addresses of
any type can be returned by getaddrinfo().

ai_protocol
This field specifies the protocol for the returned socket addresses.
Specifying 0 in this field indicates that socket addresses with any protocol
can be returned by getaddrinfo().

Some useful functions

57

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

If hints is a null pointer, the behavior must be as if it referred to a structure
containing the value zero for the ai_flags, ai_socktype and ai_protocol fields,
and AF_UNSPEC for the ai_family field.

Some useful functions

58

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

The getaddrinfo() function allocates and initializes a linked list of addrinfo
structures, one for each network address that matches node and service,
subject to any restrictions imposed by hints, and returns a pointer to the start
of the list in res. The items in the linked list are linked by the ai_next field.

There are several reasons why the linked list may have more than one addrinfo
structure. Normally, the application should try using the addresses in the order
in which they are returned.

Some useful functions

59

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

If hints.ai_flags includes the AI_CANONNAME flag, then the ai_canonname
field of the first of the addrinfo structures in the returned list is set to point to
the official name of the host.

The ai_family, ai_socktype, and ai_protocol fields return the socket creation
parameters (i.e., these fields have the same meaning as the corresponding
arguments of socket() function). For example, ai_family might return AF_INET
or AF_INET6; ai_socktype might return SOCK_DGRAM or SOCK_STREAM; and
ai_protocol returns the protocol for the socket.

Some useful functions

60

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

A pointer to the socket address is placed in the ai_addr field, and the length of
the socket address, in bytes, is placed in the ai_addrlen field.

getaddrinfo() returns 0 if it succeeds, or one of the following nonzero error
codes: EAI_ADDRFAMILY, EAI_AGAIN, EAI_BADFLAGS, EAI_FAIL, EAI_FAMILY,
EAI_MEMORY, EAI_NODATA, EAI_NONAME, EAI_SERVICE, EAI_SOCKTYPE,
EAI_SYSTEM.
The gai_strerror() function translates these error codes to a human readable
string, suitable for error reporting.

or one of the following nonzero error codes

Some useful functions

61

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

struct addrinfo *result = NULL, *ptr = NULL, hints;
…
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
rc = getaddrinfo(“myhost.mydomain.com”, “8080”, &hints, &result);
for (ptr = result; ptr != NULL; ptr = ptr->ai_next) {

mySocket = socket(ptr->ai_family, ptr->ai_socktype, ptr->ai_protocol);
…

}

or one of the following nonzero error codes

Some useful functions

62

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *node, socklen_t nodelen, char *service,
socklen_t servicelen, unsigned int flags);

The getnameinfo() function is the inverse of getaddrinfo() function. It
translates a socket address to a node name and service location, all of which
are defined as with getaddrinfo().
The argument sa points to a socket address structure to be translated.

Some useful functions

63

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *node, socklen_t nodelen, char *service,
socklen_t servicelen, unsigned int flags);

If the argument node is non-NULL and the argument nodelen is nonzero, then
the argument node points to a buffer able to contain up to nodelen characters
that will receive the node name as a null-terminated string. If the argument
node is NULL or the argument nodelen is zero, the node name will not be
returned. If the node's name cannot be located, the numeric form of the
node's address is returned instead of its name.

Some useful functions

64

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *node, socklen_t nodelen, char *service,
socklen_t servicelen, unsigned int flags);

If the argument service is non-NULL and the argument servicelen is nonzero,
then the argument service points to a buffer able to contain up to servicelen
characters that will receive the service name as a null-terminated string. If the
argument service is NULL or the argument servicelen is zero, the service name
will not be returned. If the service's name cannot be located, the numeric form
of the service address (for example, its port number) is returned instead of its
name.
The arguments node and service cannot both be NULL.

Some useful functions

65

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *node, socklen_t nodelen, char *service,
socklen_t servicelen, unsigned int flags);

The flags argument is a flag that changes the default actions of the function. By
default the fully-qualified domain name (FQDN) for the host is returned, but

If the flag bit NI_NOFQDN is set, only the nodename portion of the FQDN is
returned for local hosts.
If the flag bit NI_NUMERICHOST is set, the numeric form of the host's address
is returned instead of its name, under all circumstances.

Some useful functions

66

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *node, socklen_t nodelen, char *service,
socklen_t servicelen, unsigned int flags);

If the flag bit NI_NAMEREQD is set, an error is returned if the host's name
cannot be located.
If the flag bit NI_NUMERICSERV is set, the numeric form of the service address
is returned (for example, its port number) instead of its name, under all
circumstances.
If the flag bit NI_DGRAM is set, this indicates that the service is a datagram
service (SOCK_DGRAM). The default behavior is to assume that the service is a
stream service (SOCK_STREAM).

Some useful functions

67

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *node, socklen_t nodelen, char *service,
socklen_t servicelen, unsigned int flags);

On success, 0 is returned, and node and service names, if requested, are filled
with null-terminated strings, possibly truncated to fit the specified buffer
lengths. On error, one of the following nonzero error codes is returned:
EAI_AGAIN, EAI_BADFLAGS, EAI_FAIL, EAI_FAMILY, EAI_MEMORY,
EAI_NONAME, EAI_OVERFLOW, EAI_SYSTEM.

The gai_strerror() function translates these error codes to a human readable
string, suitable for error reporting.

	COMPUTER ENGINEERING LABORATORY
	Socket programming
	The client-server model
	The client-server model
	Protocol Families -TCP/IP
	Protocol Families -TCP/IP
	The sockets
	Local Area Network Addresses - IPv4
	TCP vs UDP
	Diapositiva numero 10
	Berkley Sockets
	Sockets
	The client-server model
	Client and server model state diagram
	Server stages
	Client stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Server stages
	Client stages
	Client stages
	Client stages
	Client stages
	Concurrent server stages
	Using AF_UNIX address family
	Using AF_UNIX address family
	Using AF_UNIX address family
	Using AF_UNIX address family
	Using AF_UNIX address family
	Using AF_UNIX address family
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions
	Some useful functions

