
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it

Introduction

2

• Course Moodle:
https://stem.elearning.unipd.it/course/.......

Resources

The C Programming Language: ANSI C Version
Introduces the features of the C programming
language, discusses data types, variables,
operators, control flow, functions, pointers,
arrays, and structures, and looks at the UNIX
system interface

3

HW and SW computer architecture

4

• First computers developed in the 1940s
• Large number of components increasingly smaller as the years pass
• All the information that reside there are encoded with sequences of

0s and 1s, in short with binary or base 2 numbers
• A program must reside in the computer's memory in order to run

just like the data manipulated by the program itself
• Programs are also encoded by binary numbers
• Initially programs were written in binary (very difficult to write and

correct them)

Von Neumann architecture

5

• RAM
• sequence of bytes, 1 byte = 8 bits, 1 bit

represents a 0 or a 1, each byte of
memory has an address, from 0 to N-1,
where N = total bytes of memory, 210

bytes = kilobyte, 220 bytes = megabyte…
• RAM is used to hold information that can

be written to or read from

• CPU
• executes programs written in a very simple

(machine) language repeating ADE cycle
(access decoding execution)

• accesses memory
• decodes instruction
• executes it

Von Neumann architecture

6

• Secondary memory
• permanent memory where what is stored

in the computer after it is turned off is
preserved

• Input/output
• devices through which data can be sent to

the computer and vice versa, results can
be output from the computer

Hardware and software machine

7

compilers and
applications

compilers and applications

operating system

hardware machine

• Hardware machine:
• pure electronic circuits made up of a very large

number of components which perform the
elementary operations of AND, OR, NOT

• Software machine:
• operating system and other programs that allow

simple use of the computer

high-level programming languages allow programmers
to describe in a simpler way (than machine language)
the operations that the CPU must perform, programs
are translated into machine language by compilers

To be considered
• representation of integers, real numbers and characters
• elementary operations performed by machine languages

• instructions that transfer contents from RAM (byte or word) to the CPU (register)
• arithmetic operations (sum, subtraction, multiplication, division): operands in two CPU

registers result in the first of the two
• compare and jump instructions (comparison of the contents of two registers result in a

third register)
• instruction signaling the end of the program

• 3 different types of constructs
• instructions that calculate results from initial values and assign them to some identifiers
• test construct in which a condition is tested and depending on the result the calculation

continues in a different way
• the loop in which a sequence of instructions is repeated until a condition is satisfied

8

Data Types
Computer memory is made up of sequences of cells, bits, which can take one of
the values {0,1}
The calculator cn process different types of information: numbers, characters,
images, sounds, videos
• Information = Data + Interpretation
Since each type of information is represented by a sequence of bits in memory,
we must always know the correct coding to read/write different types of data
For example, representation of positive integers
A sequence of digits forms a decimal number according to the following rule:
528 = 8*100 + 2*101 + 5*102

To determine the value of a positive binary number, we can use the same rule
with base 2: 101011 = 1*20 + 1*21 + 0*22 + 1*23 + 0*24 + 1*25=43

9

Signed integers representation

The number of different combinations of n bits is 2n, a maximum of 2n different
numbers can be represented and the largest number that can be represented
with n bits is 2n − 1 (because 0 is also counted)
Conclusion: the calculator can’t represent infinite numbers, therefore if the
result of an expression gives a number beyond the maximum representable
value, there will be an error (overflow)
The leftmost bit represents the sign: 0 = positive, 1 = negative
Positive numbers are represented in a “standard” way (with the rule just
shown), using n bits
Negative numbers are represented “in 2's complement”, that is, you shall add 2n

to the number and then represent it in "standard“mode. Example for n = 5
-7 = 32 – 7 = 25 = 11001

10

Signed integers representation
Positive integers are represented inside the computer using a multiple of
byte=8 bits, 4 or 8 bytes depending on the individual architecture
The sizeof(int) statement returns the number of bytes occupied by an integer
The limits.h file (#include <limits.h>) lists a series of useful numeric constants
E.g. INT_MAX: the maximum integer that can be represented in the computer
or INT_MIN: the minimum representable integer
Knowing that the calculator uses 2's complement representation, if INT_MAX =
255 (1 byte) what is INT_MAX + 1 = ?

C language does not provide an automatic mechanism that checks whether the
result of an addition is greater than INT_MAX, it is a programmer's job

11

Real numbers
Real numbers use floating point representation. The IEEE 754 standard provides
various types of floating point numbers (single precision, 32 bit, and double
precision, 64 bit)
Single precision real type: float x
Double precision real type: double x, E.g. double x = 3.2;
Control the number of decimal places printed: printf(“%.3f”, 6.2781); 6.278.
But printf(“%.3f”, 6.2789); 6.279 (the number is rounded when printed)

12

Since the reals do not have infinite precision, it
may be that, comparing two equivalent real
expressions, the operator of equality returns
false due to approximations during
calculations intermediates

Algorithm
• An orderly and finite set of elementary and unambiguous instructions for

solving a problem.
• The concept of algorithm is general (there are no references to the

calculator)

13

• 3 items
1. The problem to be solved
2. The sequence of instructions
3. The solution to the problem

• 2 actors
• who creates the instructions
• who carries them out

Algorithm
• The resolution of a problem often involves the resolution of a series of

subproblems
• problem and sub-problem are interchangeable concepts
• we will call the problems/sub-problems functions

14

• Ordered and finished set of
instructions, not ambiguous,
to resolve a problem (not
ambiguous for who or
which executes)

How create algorithms
1. What is the specific problem you

want to solve or the task you
want it to accomplish?

2. Finding starting and ending point
are crucial to listing the steps of
the process
1. Decide on a starting point
2. Find the ending point of the algorithm

3. List the steps from start to finish
4. Determine how you will

accomplish each step
5. Review the algorithm

15

Problem formalization

• Describing Inputs and Outputs
• Input: what is the input data, what is assumed about

them
• For which inputs do we guarantee that we can calculate the

solution
• We will use the term Preconditions for data assumptions

• Output: what our algorithm calculates
• must be described unambiguously for whom will use our

algorithm
• in general we associate a Postcondition

• an assertion (a formula that can be true or false) that expresses what
does a code snippet calculate

16

Start

Formalize the
problem

Example problem
Calculate the square root
of a number x
PRE: x>=0
POST: return y such that
x=y*y

Ideate the resolution algorithm

• Find the solution and
communicate it to myself in a
language familiar to myself –
for example Italian or English
• focusing on the ideation part of

the solution, there is more
freedom about elementary
operations (as long as they are
understandable and as little
ambiguous as possible)

17

Ideate the resolution
algorithm (understand

the solution)

Example problem
Sort a list of numbers in ascending order
10, 7, 14, 3, 18, 1
• List of "unordered" numbers and list of "ordered"

numbers
• POST: the “sorted” list contains the numbers sorted

in ascending order
• as long as the “unsorted numbers” list is not empty

1. select the minimum number in the “unordered
numbers” list

2. move it to the end of the "sorted numbers" list
1, 3, 7, 10, 12, 18

Communicate the algorithm to the solver
• Programming: communicating algorithms to the computer
• Programming Language: set of (elementary) instructions that

can be performed by the computer (and rules for their
composition)

• How to implement an algorithm:
1. Know the basic instructions made available by programming

language
2. Express the solution to the previous step in programming language

• if the distance between the 2 languages is large, it may have
elements of difficulty, you will learn implementation patterns

• important to perform the two steps separately, to keep under
control the difficulty

18

Explain the
solution to the

solver

Programming languages

Low-level languages (machine language):
• depend on the architecture
• instructions are really basic, very far from spoken language,

so it is more difficult to think of complex algorithms directly
in machine language

High-level languages:
• some new instructions are implemented in machine

language
• the user expresses a program through these new instructions

• new instructions are automatically translated in the machine
language, via a program called a translator(compiler)

19

Explain the
solution to the

solver

Compilers

• If the architecture changes, we just need to provide a translator for the new
one (and retranslate our programs)

• Desired characteristics for a language:
• Low complexity of the translator  the number of new instructions

implemented in the low-level language is reduced
• Power of language  you can create additional “instructions” (functions)

directly in the new language
• these instructions are collected in libraries
• knowing them allows you to save time and not reinvent something already available

• Examples of high-level languages: C, C++, Java, Python

20

C language

• High-level languages are a balance between two conflicting goals:
• have the programming language do more checks to avoid user errors (never trust

the programmer)
• remain efficient

• C language: developed in 1970 by Ken Thompson and Dennis Ritchie
• little memory available in computers, in the order of Kb with efficiency as the

principal objective
• it is close to low-level languages (some principles, for example the object-oriented

programming, will be developed only later)
• Language specifications published in 1978

• very popular, many compilers are created, even with different behaviors
• a standard, ANSI C, is created and is up to date.

21

Correctness

• After you have implemented the
algorithm, you shall provide
evidence that the program is
correct, that is, it achieves the
postcondition

• The type of evidence depends on
the context
• unit tests (check that, for certain

inputs we obtain the desired output)
• correctness tests

• If the program is incorrect, you shall
analyze the operation via the
debugger

22

right
solution?

Ideate the resolution
algorithm (understand

the solution)

End

YES
NO

Programs are different

How different algorithms and different implementations can be evaluated?
• The most important criterion is the correctness
• How can a program be improved with equal correctness?

• Efficiency (time and space) both at an algorithmic and implementation
level

• Organization: you create code (well-done) once, then you reuse such
code
• The problem is divided into sub-problems and an attempt is made to reuse the

existing solutions implemented in the past
• Style: the code shall be understandable to your colleagues and yourself

after some months

23

Interpretation vs compilation

The computer can only execute programs in machine language that is a low
level language (depending on architecture)
Together with the language specification, a tool that translates our programs
into the language of the host machine is provided: the translator

Interpreter: translates a high-level instruction and carries it out immediately
Compiler: translates all the instructions together which are then executed
together directly into machine language (C, C++)
There are intermediate solutions: compilation into bytecode and interpretation
(Java)

24

Translator
C language

program

Interpretation vs compilation

25

When using the interpreter:
• the program execution is slower
• requires translator to run the program
• having the translator and the source code, it can be run on any computer
When using the compiler:
• the program execution is faster (usually the code is optimized too)
• there is no need of a translator, but every time the program is changed it

has to be recompiled
• the code must be compiled for each different architecture
In the case of C language: compiled language; restricted set of basic commands
(many function libraries to be used), the compiler is "easy" to write, therefore
quite portable

To start

A quick introduction to C language illustrating the essential elements of the
language in real programs, focusing on the fundamentals: variables and
constants, arithmetic, control structures, functions, input/output elementary
principles.
The first program to write is the same for every language: print the words “Hello
world!”
What shall be done:
• create the program text
• compile it correctly
• run it
• know where the output is sent

26

Hello world

#include <stdio.h>

int main () {
 /* our first program that
 prints the string ”Hello world!”

*/
 printf(”Hello world!\n”); // \n represents a newline
}

27

EDITOR DISK

Phase 1: The
programmer creates
the program by
using the editor and
stores it in the disk

printf command
is avalibale in
stdio library

start of the
function: {

every C program
shall have

function main
end of the
function: }

comments

commands
separated

by ;

character
sequences

(strings) must
becontained
between ” ”

Hello world

The way to run the program depends on the system you are using. As a
specific example on a Linux system you shall create the source program in a
file with .c extension like helloWorld.c and compile it with the command gcc
For example the command
gcc helloWorld.c –o helloWorld
if no errors have been made in writing the program, it will compile, creating
an executable file with the name helloWorld
Running the program via helloWorld command will produce the output

Hello world!
In other system the rules may be a bit different but more or less very similar

28

Hello world: C language main characteristics

• A C program consists of functions and variables. A function contains statements that
specify the computing operations to be done, and variables store values used during the
computation

• Programmers may give functions whatever names they like, but ''main'' is special - every
program begins executing at the beginning of main

• #include <stdio.h>
• tells the compiler to include information about the standard input/output library; the line appears at

the beginning of many C source files
• One method of communicating data between functions is for the calling function to

provide a list of values, called arguments, to the function it calls. The parentheses after the
function name surround the argument list. In this example, main is defined to be a
function that expects no arguments, which is indicated by the empty list ()

• The statements of a function are enclosed in braces { }

29

	COMPUTER ENGINEERING LABORATORY
	Introduction
	Resources
	HW and SW computer architecture
	Von Neumann architecture
	Von Neumann architecture
	Hardware and software machine
	To be considered
	Data Types
	Signed integers representation
	Signed integers representation
	Real numbers
	Algorithm
	Algorithm
	How create algorithms
	Problem formalization
	Ideate the resolution algorithm
	Communicate the algorithm to the solver
	Programming languages
	Compilers
	C language
	Correctness
	Programs are different
	Interpretation vs compilation
	Interpretation vs compilation
	To start
	Hello world
	Hello world
	Hello world: C language main characteristics

