
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it

Input and output

2

Input and Output

For input and output we shall use the standard library, a set of functions that
provide input and output, string handling, storage management, mathematical
routines, and a variety of other services for C programs.
A text stream consists of a sequence of lines; each line ends with a newline
character.
The simplest input mechanism is to read one character at a time from the
standard input, normally the keyboard, with getchar:

int getchar(void)
The function

int putchar(int)
is used for output: putchar(c) puts the character c on the standard output.

3

Input and Output

Input and/or output can usually be directed from / to a file with <filename or
>filename:
program <infile causes program to read characters from infile instead of
standard input
program >outfile will write the standard output to outfile instead of standard
output.
If pipes are supported,

program | anotherprogram
puts the standard output of program into the standard input of
anotherprogram.
Each source file that refers to an input/output library function must contain
the line #include <stdio.h> before the first reference.

4

Input and Output

• Formatted Output – printf

• Formatted Input – Scanf

• File access

• Line Input and Output

• Error Handling - Stderr and Exit

• Variable-length Argument Lists
5

Input and Output: formatted output
The output function printf (stands for "print formatted“) translates internal
values to characters.
The declaration is

int printf(char *format, arg1, arg2, ...);
printf allows you to print data of various types, such as integers, floating-point
numbers, characters, and strings, with precise formatting, it converts, formats,
and prints its arguments on the standard output under control of the format.
It returns the number of characters printed.
The format string contains two types of objects: ordinary characters, which are
copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument to printf.

6

Input and Output
Each conversion specification begins with a % and ends with a conversion
character. Between the % and the conversion character there may be, in
order:
• A minus sign, which specifies left adjustment of the converted argument.
• A number that specifies the minimum field width. The converted argument

will be printed in a field at least this wide.
• A period, which separates the field width from the precision.
• A number, the precision, that specifies the maximum number of characters

to be printed from a string, or the number of digits after the decimal point
of a floating-point value, or the minimum number of digits for an integer.

• An h if the integer is to be printed as a short, or l (letter ell) if as a long.
If the character after the % is not a conversion specification, the behavior is
undefined.

7

Input and Output – basic printf conversion

8

Character Argument type; Printed As

d, i int; decimal number

o int; unsigned octal number (without a leading zero)

x, X int; unsigned hexadecimal number (without a leading 0x or 0X), using abcdef or ABCDEF for 10, ...,15.

u int; unsigned decimal number

c int; single character

s char *; print characters from the string until a '\0' or the number of characters given by the precision.

f double; [-]m.dddddd, where the number of d's is given by the precision (default 6)

e, E double; [-]m.dddddde+/-xx or [-]m.ddddddE+/-xx, where the number of d’s is given by the precision
(default 6)

g, G double; use %e or %E if the exponent is less than -4 or greater than or equal to the precision; otherwise
use %f. Trailing zeros and a trailing decimal point are not printed

p void *; pointer (implementation-dependent representation)

% no argument is converted; print a %

Input and Output – basic printf conversion

There is the possibility to specify a width or precision by using an argument by
means of the character *, in which case the value is computed by converting
the next argument (which must be an int).

For example
• to print at most max characters from a string s,

printf("%.*s", max, s);
• to print characters from a string s in a minimum field width of max length,

printf("%*s", max, s);

9

Input and Output – basic printf conversion

Let’s consider the precision that relates to string arguments. The following
rows shows the effect of a variety of specifications in printing ``hello, world''
(12 characters). We have put colons around each field.
:%s: :hello, world:
:%10s: :hello, world:
:%.10s: :hello, wor:
:%-10s: :hello, world:
:%.15s: :hello, world:
:%-15s: :hello, world :
:%15.10s: : hello, wor:
:%-15.10s: :hello, wor :

10

Input and Output
Common Escape Sequences:
Escape sequences are special characters used within format specifiers to
control the formatting of the output. Common escape sequences include:
\n: Newline (line feed)
\t: Tab
\": Double quotation mark
\': Single quotation mark
\\: Backslash
Error Handling:
It's essential to ensure that the number and types of arguments provided match
the format specifiers in the printf statement. Mismatches can lead to undefined
behavior or errors in your program.

11

Input and Output

If s is an array of char the invocation
printf(“%s”, s);

is safe, while the invocation
printf(s);

fails if in the string s there are characters %
The function sprintf performs the same conversions as printf does, but stores
the output in a string:

int sprintf(char *buffer, char *format, arg1, arg2, ...);
sprintf formats the arguments in arg1, arg2, etc., according to format as
before, but places the result in the array of char buffer instead of the standard
output; buffer must be big enough to receive the result.

12

Input and Output: formatted input
The I/O so far has been character oriented, reading one character at a time.

It is hard to interpret two values on the same line
printf("enter your age and weight ");

A name and a number
printf("enter your name and age ");

Other combinations

These problems could be solved by asking the user for one piece of input per
line.
• This might be unnatural.
• It is also awkward when there are many fields.

13

Input and Output: formatted input
The function scanf is the input analog of printf, providing many of the same
conversion facilities in the opposite direction. The scanf function is part of the
stdio.h library, and its syntax is as follows

int scanf(char *format, ...)
scanf reads characters from the standard input, interprets them according to
the specification provided in format string, and stores the results through the
remaining arguments. These remaining arguments, that must be pointers,
indicate where the corresponding converted input shall be stored.

scanf stops when it exhausts its format string, or when some input fails to
match the control specification. It returns the number of successfully matched
and assigned input items. This can be used to decide how many items were
found.

14

Input and Output: formatted input
On the end of file, EOF is returned; note that this is different from 0, which
means that the next input character does not match the first specification in
the format string. The next call to scanf resumes searching immediately after
the last character already converted.
The format string usually contains conversion specifications, which are used to
control conversion of input. The format string may contain:
• blanks or tabs, which are not ignored
• ordinary characters (not %), which are expected to match the next non-

white space character of the input stream
• conversion specifications, consisting of the character %, an optional

assignment suppression character *, an optional number specifying a
maximum field width, an optional h, l or L indicating the width of the
target, and a conversion character.

15

Input and Output: formatted input

A conversion specification directs the conversion of the next input field.
Normally the result is placed in the variable pointed to by the corresponding
argument. If assignment suppression is indicated by the * character, however,
the input field is skipped; no assignment is made.

An input field is defined as a string of non-white space characters; it extends
either to the next white space character or until the field width, if specified, is
exhausted. White space characters are blank, tab, newline, carriage return,
vertical tab, and form feed.

The conversion character indicates the interpretation of the input field.

16

Input and Output – basic scanf conversion

17

Character Input data; Argument type
d decimal integer; int *
i integer; int *. The integer may be in octal (leading 0) or hexadecimal (leading 0x or 0X).
o octal integer (with or without leading zero); int *
x hexadecimal integer (with or without leading 0x or 0X); int *
u unsigned decimal integer; unsigned int *
c characters; char *. The next input characters (default 1) are placed at the indicated spot. The

normal skip-over white space is suppressed; to read the next non-white space character, use
%1s

s character string (not quoted); char *, pointing to an array of characters long enough for the
string and a terminating '\0' that will be added.

e, f, g floating-point number with optional sign, optional decimal point and optional exponent; float *
% literal %; no assignment is made.

Input and Output: formatted input

The conversion characters d, i, o, u, and x may be preceded by h to indicate
that a pointer to short rather than int appears in the argument list, or by l
(letter ell) to indicate that a pointer to long appears in the argument list.

#include <stdio.h>
main() /* rudimentary calculator */
{

double sum, v;
sum = 0;
while (scanf("%lf", &v) == 1)

printf("\t%.2f\n", sum += v);
return 0;

} 18

Input and Output: formatted input

Literal characters can appear in the scanf format string; they must match the
same characters in the input. So we could read dates of the form mm/dd/yy
with the scanf statement:

int day, month, year;
scanf("%d/%d/%d", &month, &day, &year);

to read input lines that contain dates of the form
25 Dec 1988
The scanf statement is

int day, year;
char monthname[20];
scanf("%d %s %d", &day, monthname, &year);

19

Input and Output: formatted input

scanf ignores blanks and tabs in its format string. Furthermore, it skips over
white space (blanks, tabs, newlines, etc.) as it looks for input values. To read
input whose format is not fixed, it is often best to read a line at a time, then
pick it apart with string variant input management of scanf.

Warning: the arguments to scanf must be pointers. By far the most common
error is writing

scanf("%d", n);
instead of

scanf("%d", &n);
This error is not generally detected at compile time.

20

Input and Output: formatted input

It's crucial to validate the input when using scanf to avoid unexpected
behavior or errors. For example, you should check the return value to see if
the input was successfully read, and you can use conditional statements to
prompt the user for input again if needed.

There is a function sscanf that reads from a string instead of the standard
input:
int sscanf(char *string, char *format, arg1, arg2, ...)
It scans the string according to the format in format and stores the resulting
values through arg1, arg2, etc. These arguments must be pointers.

21

File access
In C programming, file access functions are part of the standard C library
(<stdio.h>) and are used to interact with files on a computer's file system.
These functions allow you to perform various file-related operations, such as
opening, reading, writing, closing, and manipulating files.

So far, we have seen how to read from the standard input and to write to the
standard output, which are automatically defined for a program by the local
operating system.

Now we are going to see how to access a file that is not already connected to
the program. How can we arrange for the named files to be read - that is, how
to connect the external names to the statements that read the data?

22

File access
The rules are simple. Before a file can be read or written, it has to be opened
by the library function fopen. fopen takes an external filename, and after
some negotiations with the operating system returns a pointer to be used in
subsequent reads or writes of the file.

This pointer, called the file pointer, points to a structure that contains
information about the file, such as the location of a buffer, the current
character position in the buffer, whether the file is being read or written, and
whether errors or end of file have occurred. The definitions in <stdio.h>
include a structure declaration called FILE.

23

File access: fopen
The only declarations needed for a file pointer are:

FILE *fp;
FILE *fopen(char *name, char *mode);

These statements mean that fp is a pointer to a FILE, and fopen returns a
pointer to a FILE. FILE is a type name, like int, not a structure tag; therefore, it
is defined with a typedef.
The call to fopen in a program is

fp = fopen(name, mode);
The first argument of fopen is a character string containing the name of the
file. The second argument is the mode, also a character string, which
indicates how one intends to use the file.

24

File access: fopen
Allowable modes include read ("r"), write ("w"), and append ("a"). Some
systems distinguish between text and binary files; for the latter, a "b" must be
appended to the mode string.

FILE *file = fopen("example.txt", "r"); // Open for reading

• If a file that does not exist is opened for writing or appending, it is created
if possible.

• Opening an existing file for writing causes the old contents to be
discarded, while opening for appending preserves them.

• Trying to read a file that does not exist is an error, and there may be other
causes of error as well, like trying to read a file when you don't have
permission. If there is any error, fopen will return NULL.

25

File access: getc and putc
How to read or write the file once it is open?
getc returns the next character from a file; it needs the file pointer to tell it
which file.

int getc(FILE *fp)
getc returns the next character from the stream referred to by fp; it returns
EOF for end of file or error.
putc is an output function:

int putc(int c, FILE *fp)
putc writes the character c to the file fp and returns the character written, or
EOF if an error occurs.
Like getchar and putchar, getc and putc may be macros instead of functions.

26

File access: fprintf
For formatted input or output of files, the functions fscanf and fprintf may be
used. These are identical to scanf and printf, except that the first argument is
a file pointer that specifies the file to be read or written; the format string is
the second argument.
The fprintf function allows you to write formatted data to a file, similar to the
printf function for standard output. It takes a file stream and a format string,
along with additional arguments for variable data.

Syntax:
int fprintf(FILE *stream, const char *format, ...);

Example:
fprintf(file, "This is an integer: %d\n", 42);

27

File access: fscanf
The fscanf function is used to read formatted data from a file, similar to the
scanf function for standard input. It takes a file stream and a format string,
along with pointers to variables where the data will be stored.

Syntax:
int fscanf(FILE *stream, const char *format, ...);

Example:
int number;
fscanf(file, "This is an integer: %d", &number);

28

File access: fread
The fread function is used to read data from a file into a specified buffer. You
provide the buffer, the size of each element to be read, the number of
elements to be read, and the file stream.

Syntax:
size_t fread(void *ptr, size_t size, size_t count, FILE *stream);

Example:
char buffer[100];
fread(buffer, sizeof(char), 100, file);

29

File access: fwrite
The fwrite function is used to write data from a buffer to a file. You provide
the buffer, the size of each element to be written, the number of elements to
be written, and the file stream.

Syntax:
size_t fwrite(const void *ptr, size_t size, size_t count, FILE *stream);

Example:
char data[] = "This is a sample text.";
fwrite(data, sizeof(char), strlen(data), file);

30

File access: fseek and ftell
fseek allows you to set the file position indicator within a file stream. ftell is
used to determine the current file position.

Syntax:
int fseek(FILE *stream, long int offset, int origin); (for fseek)

Syntax:
long int ftell(FILE *stream); (for ftell)

Example:
fseek(file, 0, SEEK_SET); // Move to the beginning of the file
long position = ftell(file); // Get the current position

31

File access: rewind and feof
The rewind function is used to reset the file position indicator to the
beginning of the file.
Syntax:

void rewind(FILE *stream);
Example:

rewind(file);
The feof function is used to check if the end-of-file has been reached in a file
stream. It returns a non-zero value if the end-of-file indicator is set.
Syntax:

int feof(FILE *stream);
Example:

if (feof(file)) {
// End of file reached

} 32

File access: fclose
The fclose function is used to close an open file, releasing any resources
associated with it. It should be called when you're done working with a file to
ensure proper file management. fclose flushes the stream pointed to by
stream (writing any buffered output data) and closes the underlying file
descriptor, freeing the file pointer for another file.

Syntax:
int fclose(FILE *stream);

Upon successful completion, 0 is returned. Otherwise, EOF is returned. In
either case, any further access (including another call to fclose()) to the
stream results in undefined behavior.
Example:

fclose(file);
33

File access: remove and rename
The remove function is used to delete a file, and the rename function is used
to change the name of a file.

Syntax:
int remove(const char *filename); (for remove)

Syntax:
int rename(const char *old_filename, const char *new_filename); (for
rename)

Example:
remove("oldfile.txt");
rename("newfile.txt", "renamedfile.txt");

34

File access: stdout, stdin, stderr
When a C program is started, the operating system environment is
responsible for opening three files and providing pointers for them.
These files are
• the standard input
• the standard output
• the standard error;
the corresponding file pointers are called stdin, stdout, and stderr, and are
declared in <stdio.h>. Normally stdin is connected to the keyboard and
stdout and stderr are connected to the screen, but stdin and stdout may be
redirected to files or pipes.

35

File access: example
#include<stdio.h>
#include<conio.h>
main()
{

FILE *fp;
char ch;
fp = fopen("hello.txt", "w");
printf("Inserisci il dato: ");
while((ch = getchar()) != EOF) {
putc(ch,fp);

}
fclose(fp);
fp = fopen("hello.txt", "r");

while((ch = getc(fp)! = EOF)
printf("%c",ch);

fclose(fp);
} 36

File access: example
#include <stdio.h>
#include <stdlib.h>

int main() {
 // create file pointers.
 FILE *names = fopen("names.txt", "r");
 FILE *greet = fopen("greet.txt", "w");

 // check if all is fine
 if (!names || !greet) {
 fprintf(stderr, "Apertura del file fallita!\n");
 return EXIT_FAILURE;
 }

37

// Time of greetings
 char nome[20];
 // keep on reading until ….
 while (fscanf(names, "%s\n", nome) > 0) {
 fprintf(greet, "Ciao, %s!\n", nome);
 }

 // When the feof is reached prints a message on stdout
 if (feof(names)) {
 printf("The greetings are over!\n");
 }

 return EXIT_SUCCESS;
}

	COMPUTER ENGINEERING LABORATORY
	Input and output
	Input and Output
	Input and Output
	Input and Output
	Input and Output: formatted output
	Input and Output
	Input and Output – basic printf conversion
	Input and Output – basic printf conversion
	Input and Output – basic printf conversion
	Input and Output
	Input and Output
	Input and Output: formatted input
	Input and Output: formatted input
	Input and Output: formatted input
	Input and Output: formatted input
	Input and Output – basic scanf conversion
	Input and Output: formatted input
	Input and Output: formatted input
	Input and Output: formatted input
	Input and Output: formatted input
	File access
	File access
	File access: fopen
	File access: fopen
	File access: getc and putc
	File access: fprintf
	File access: fscanf
	File access: fread
	File access: fwrite
	File access: fseek and ftell
	File access: rewind and feof
	File access: fclose
	File access: remove and rename
	File access: stdout, stdin, stderr
	File access: example
	File access: example

