
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it

Getting started

2

To start

A quick introduction to C language illustrating the essential elements of the
language in real programs, focusing on the fundamentals: variables and
constants, arithmetic, control structures, functions, input/output elementary
principles.
The first program to write is the same for every language: print the words “Hello
world!”
What shall be done:
• create the program text
• compile it correctly
• run it
• know where the output is sent

3

Hello world

#include <stdio.h>

int main () {
 /* our first program that
 prints the string ”Hello world!”

*/
 printf(”Hello world!\n”); // \n represents a newline
}

4

EDITOR DISK

Phase 1: The
programmer creates
the program by
using the editor and
stores it in the disk

printf command
is avalibale in
stdio library

start of the
function: {

every C program
shall have

function main
end of the
function: }

comments

commands
separated

by ;

character
sequences

(strings) must
becontained
between ” ”

Hello world

The way to run the program depends on the system you are using. As a
specific example on a Linux system you shall create the source program in a
file with .c extension like helloWorld.c and compile it with the command gcc
For example the command
gcc helloWorld.c –o helloWorld
if no errors have been made in writing the program, it will compile, creating
an executable file with the name helloWorld
Running the program via helloWorld command will produce the output

Hello world!
In other system the rules may be a bit different but more or less very similar

5

Hello world: C language main characteristics

• A C program consists of functions and variables. A function contains statements that
specify the computing operations to be done, and variables store values used during the
computation

• Programmers may give functions whatever names they like, but ''main'' is special - every
program begins executing at the beginning of main

• #include <stdio.h>
• tells the compiler to include information about the standard input/output library; the line appears at

the beginning of many C source files
• One method of communicating data between functions is for the calling function to

provide a list of values, called arguments, to the function it calls. The parentheses after the
function name surround the argument list. In this example, main is defined to be a
function that expects no arguments, which is indicated by the empty list ()

• The statements of a function are enclosed in braces { }

6

Notes

Some considerations.
• \n represents only a single character. An escape sequence like \n provides

a general and extensible way for representing invisible characters. Other
escape sequences that C provides are \t for tab, \b for backspace, \" for the
double quote and \\ for the backslash itself.

Exercises
• Run the ``hello, world'' program on your system. Experiment with leaving

out parts of the program, to see what error messages you get.
• Experiment what happens when prints's argument string contains \c,

where c is some character not listed above.

7

Translation

8

PREPROCESSSOR DISK
Phase 2: the preprocessor
processes the code

• Comments removal
• Each line starting with # indicates a preprocessor

directive
• #include <x>: the contents of file x are copied to

this point in the file
• #include <x> allows access to the commands made

available by the x library
• Eg stdio.h allows you to use the printf command

• Expanding macros (we'll see them later)
• #define X 3, replaces every occurrence of X in the file

with 3

#include <stdio.h>

int main () {
 printf(”Hello world!\n”);
}

Translation

9

COMPILER DISK

Phase 3: the compiler
creates the object code
and stores it in the disk

• The compiler analyzes the code file including the code and translates it into
low-level language instructions

• Instructions shall strictly follow the syntax defined by the C language
• An error is generated if the compiler fails to parse the code
• If successful, a file with low-level language instructions is generated

Translation

10

LINKER DISK

Phase 4: the linker links the object code
to the libraries, creates an executable
file and and stores it in the disk

• A program is generally made up of many files and makes use of functions
already written by others (for example printf)

• To avoid duplicating the code of these functions, they are loaded into
memory once and linked to our program

• The linker is invoked by passing it the file that uses printf and the file
where printf is defined (both compiled)

Comments

• High level description of what (or how) some fragment of code or an
entire program does

• Purpose of comments: let those who read the program understand the
code as quickly as possible

• Comments shall not be trivial: 3+2; //add 3 and 2
• When using an unusual algorithm for solving a problem, it’s better to

indicate such usage
• Every program and function should indicate how shall be invoked
• Any characters between /* and */ are ignored by the compiler; they may

be used freely to make a program easier to understand. Comments may
appear anywhere where a blank, tab or newline can

11

Variables and Arithmetic Expressions
Using the formula oC=(5/9)(oF-32) print a table of Fahrenheit temperatures and
their centigrade or Celsius equivalents, for values from 0 to 100 oF
The program can still consist of the definition of a single function named main.
Several new ideas, including comments, declarations, variables, arithmetic
expressions, loops , and formatted output are introduced

12

#include <stdio.h>
main()
{
 int fahr, celsius;
 int lower, upper;
 lower = 0;
 upper = 100;
 fahr = lower;
 while (fahr <= upper) {
 celsius = 5 * (fahr-32) / 9;
 printf("%df\t%dc\n", fahr, celsius);
 fahr = fahr + 1;
 }
}

Variables and arithmetic expressions
In C, all variables must be declared before they are used, usually at the
beginning of the function before any executable statements.
A declaration announces the properties of variables; it consists of a type and a
list of variables, such as

int fahr, celsius;
int lower, upper;

The type int means that the variables listed are integers; by contrast with float,
which means floating point, i.e., numbers that may have a fractional part.
The range of both int and float is machine-dependant.
Computation in the temperature conversion program begins with the
assignment statements which set the variables to their initial values.
Individual statements are terminated by semicolons

lower = 0; upper = 100; 13

Other data types

C provides several other data types besides int and float, including:

char character - a single byte
short short integer
long long integer
double double-precision floating point

The size of these objects is also machine-dependent. There are also arrays,
structures and unions of these basic types, pointers to them, and functions that
return them, all of which we will meet in the course.

14

15

Output
0f -17c
1f -17c
2f -16c
3f -16c
4f -15c
5f -15c
6f -14c
7f -13c
8f -13c
9f -12c
10f -12c
………………..
96f 35c
97f 36c
98f 36c
99f 37c
100f 37c

Some problems
• The output isn't pretty because the numbers are not

justified. We can augment each %d directive in the printf
statement with a width, therefore the printed numbers
printed will be right-justified. For example

printf("%3d %6d\n", fahr, celsius);
So, the first number of each line will be printed in a field
three digits wide, and the second in a field six digits wide
0f -17c
 8f -13c
 9f -12c
……………
10f -12c

16

Output

Another (more serious) problem is that because we have
used integer arithmetic, the Celsius temperatures are not
accurate; for instance, 0oF is actually about -17.8oC, not -17.
We shall use floating-point arithmetic instead of integer in
order to produce more accurate outputs. Here the ouput
produced by a second version using floating arithmetic

0 f -17.7778 c
1 f -17.2222 c
2 f -16.6667 c
3 f -16.1111 c
4 f -15.5556 c
5 f -15.0000 c
6 f -14.4444 c
7 f -13.8889 c
8 f -13.3333 c
9 f -12.7778 c
10 f -12.2222 c
………………………..
96 f 35.5556 c
97 f 36.1111 c
98 f 36.6667 c
99 f 37.2222 c
100 f 37.7778 c

17

#include <stdio.h>

int main()
{
 float celsius, fahr;
 float lower, upper;
 lower = 0;
 upper = 100;
 fahr = lower;
 while (fahr <= upper) {

celsius = 5 * (fahr - 32) / 9;
 printf("%3.0ff\t%6.4fc\n", fahr, celsius);
 fahr = fahr + 1;
 }
}

Output
0 f -17 c
1 f -17 c
2 f -16 c
3 f -16 c
4 f -15 c
5 f -15 c
6 f -14 c
7 f -13 c
8 f -13 c
9 f -12 c
10 f -12 c
………………..
96 f 35 c
97 f 36 c
98 f 36 c
99 f 37 c
100 f 37 c

0f -17.7778c
 1f -17.2222c
 2f -16.6667c
 3f -16.1111c
 4f -15.5556c
 5f -15.0000c
 6f -14.4444c
 7f -13.8889c
 8f -13.3333c
 9f -12.7778c
 10f -12.2222c
………………………..
 96f 35.5556c
 97f 36.1111c
 98f 36.6667c
 99f 37.2222c
100f 37.7778c

18

#include <stdio.h>

int main()
{
 /* print Fahrenheit-Celsius table
 for fahr = 0, 1, ..., 100 */
 float celsius, fahr;
 float lower, upper;
 lower = 0;
 upper = 100;
 fahr = lower;
 while (fahr <= upper) {

celsius = 5 * (fahr - 32) / 9;
 printf("%3.0ff\t%6.4fc\n", fahr, celsius);
 fahr = fahr + 1;
 }
}

With comments

Arithmetic operations

• If an arithmetic operator has integer operands, an integer operation is
performed.

• If an arithmetic operator has one floating-point operand and one integer
operand, the integer will be converted to floating point before the operation
is done.

Writing floating-point constants with explicit decimal points emphasizes their
floating-point nature for human readers.
The assignment fahr = lower; and the test while (fahr <= upper) work in the
natural way - the int is converted to float before the operation is done.

19

Printf conversion specifications

The printf conversion specification %3.0f says that a floating-point number (here
fahr) is to be printed at least 3 characters wide, with no decimal point and no
fraction digits. %6.4f describes another number (celsius) that is to be printed at
least 6 characters wide, with 4 digits after the decimal point. The output looks
like this:
96f 35.5556c
97f 36.1111c
98f 36.6667c
99f 37.2222c

100f 37.7778c
Width and precision may be omitted from a specification.

20

Printf conversion specifications

printf also recognizes %o for octal, %x for hexadecimal, %c for character, %s for character
string and %% for itself.
Exercises
• Modify the temperature conversion program to print a heading above the table.
• Write a program to print the corresponding Celsius to Fahrenheit table.

21

SPECIFICATION RESULT

%d print as decimal integer

%4d print as decimal integer, at least 4 characters wide

%f print as floating point

%6f print as floating point, at least 6 characters wide

%.4f print as floating point, 2 characters after decimal point

%6.4f print as floating point, at least 6 wide and 2 after decimal point

Loop

Each line of the temperature table is computed in the same way, so we use a
loop that repeats once per output line; this is the purpose of the while loop

while (fahr <= upper) {
...
}

The while loop operates as follows: The condition in parentheses is tested. If it
is true, the body of the loop is executed. Then the condition is re-tested, and if
true, the body is executed again. When the test becomes false the loop ends,
and execution continues at the statement that follows the loop.
The body of a while loop may be one or more statements enclosed in braces,
or a single statement without braces.

22

Loop
A cycle executes a block of instructions, called a cycle block (composed of the
instructions instructionLoop1, instructionLoop2, ..), 0, 1 or more times,
depending on the value of a cond condition.
The program evaluates a condition. As long as the condition is true, the program
executes the loop block and checks the condition again.
When the condition becomes false, the program ends the execution of the
block.
A single execution of the loop block is called an iteration.
For example, when the loop block is executed three times, it is said that three
iterations have been executed.
A function (or algorithm) containing a loop is said to be iterative.

23

Loop

There are three types of cycles:
• Counter cycle.

• We need to use it when we know the number of iterations before executing the loop.
• Cycle at initial condition.

• We must use it when:
• we don't know the number of iterations, and
• there is at least one input that the loop does not have to process even once.

• Cycle with final condition.
• We must use it when:

• we don't know the number of iterations, and
• the loop must process each input to the problem at least once.

24

Loop

Of course, in the loop block we shall insert an instruction that shall make the
condition cond false sooner or later.
If this instruction were not there, the condition would always be true and
therefore the cycle would be repeated an infinite number of times.
There are two particular situations regarding the value of the cond condition:
1. The cond condition is false immediately, that is, when the program checks it

for the first time. In this case, the block is executed 0 or 1 time, depending on
the type of loop (as we will see later in the course).

2. The cond condition is always true. In this case, there is an infinite loop,
because the program always executes the block and, therefore, will never
execute instructions placed after the end of the block.

25

Loop

Sometimes we could purposely design an infinite loop. But, quite often, there
is an infinite loop because we have made a logical error. An iterative function
requires more complicated tracing than a generic function because it modifies
the same variables multiple times. For this reason, we need to set up its trace
table by considering the following rules:
• We need to insert a column into the table containing the value of the loop

condition.
• We must insert a row into the table for each iteration, where we insert the

values of the variables or expressions modified by the iteration.
We will see some examples later in the course.

26

The for statement
There are many different ways to write a program for a particular task. Let's try
a variation about the temperature converter.
#include <stdio.h>
/* print Fahrenheit-Celsius table */
main()
{
 float fahr;
 for (fahr = 0; fahr <= 100; fahr = fahr + 1)
 printf("%3.0ff\t%6.4fc\n",fahr, (5.0/9.0)*(fahr-32));
}

This produces the same answers, but it certainly looks different

27

The for statement
The syntax of the for statement is
for (statement1; cond2; statement3) {

/* This is where the for block begins. */
instructionLoop1;
instructionLoop2;
..
} /* for */

cond2 is a condition. statement1, cond2 and statement3 are optional.
The effect of the for loop is:
The program executes statement1.
As long as cond2 is true, the program executes the loop block and then executes
statement3. When the loop block has only one statement, we can eliminate its
curly braces.

28

The for statement: some hints
Use the for loop as follows:
Use statement1 to initialize a counter i to an initial value;
Use cond2 to check if counter i is less than the final value;
Use statement3 to increment (or decrement) the counter i.
for (i = ini; i < end; i++) {

/* The for block begins here. */
instructionLoop1;
instructionLoop2;
..
} /* for */

The program loops for every i from ini to end - 1 inclusive.

29

The for statement: some hints

So, if ini < end, the program executes the loop end – ini times.
If, ini >= end, the program does not execute the loop even once.
The loop defined using the for statement is called a counter loop, because the
variable i "counts" the iterations performed.
If we use the variable i only to count the iterations, it is better to initialize it with
the value 0, for a reason that you will see when studying arrays.
So, to execute a loop n times, we should use the loop:
for (i = 0; i < n; i++) {

..
} /* for */

30

The do – while loop
We have already encountered the while and for loops.

while (expression)
statement

the expression is evaluated. If it is non-zero, statement is executed and
expression is reevaluated.
This cycle continues until expression becomes false, at which point execution
resumes after statement.

for (expr1; expr2; expr3)
statement

the while and for loops test the termination condition at the top.
By contrast, the third loop in C, the do-while, tests at the bottom after making
each pass through the loop body; the body is always executed at least once.

31

The do – while loop
The syntax of the do – while loop is

do
statement

while (expression);
The statement is executed, then expression is evaluated. If it is true, statement
is executed again, and so on. When the expression becomes false, the loop
terminates.

Experience shows that do-while is much less used than while and for.
Nonetheless, from time to time it is valuable

32

	COMPUTER ENGINEERING LABORATORY
	Getting started
	To start
	Hello world
	Hello world
	Hello world: C language main characteristics
	Notes
	Translation
	Translation
	Translation
	Comments
	Variables and Arithmetic Expressions
	Variables and arithmetic expressions
	Other data types
	Output
	Output
	Output
	With comments
	Arithmetic operations
	Printf conversion specifications
	Printf conversion specifications
	Loop
	Loop
	Loop
	Loop
	Loop
	The for statement
	The for statement
	The for statement: some hints
	The for statement: some hints
	The do – while loop
	The do – while loop

