
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1



Getting started - continue

2



Recap basic sintax rules and some new ones

3

• Curly Braces for Code Blocks
• Semicolons at the End of Statements
• Case Sensitivity
• Symbolic Constants
• Arithmetic operators
• Equality operators
• If-then-else
• Loops
• for
• while
• do-while

• Data Types
• Arguments - Call by Value



Curly braces

C uses curly braces { and } to define code blocks or compound statements. Code 
blocks group together multiple statements and are used with control structures 
like loops (for, while, do-while) and conditional statements (if, else, switch). It's 
crucial to enclose the statements within curly braces properly. This ensures that 
the compiler understands the scope of the code block. For example:

while (condition) {
// Code block
statement1;
statement2;

}
Using curly braces correctly is essential for code clarity and to prevent logical 
errors in your C programs.

4



Semicolons at the End of Statements

Another critical syntax rule in C is the use of semicolons at the end of 
statements.
In C, each statement must be terminated with a semicolon (;).
Statements are the building blocks of a C program and include things like 
variable declarations, assignments, function calls, and control structures.
Failing to add a semicolon at the end of a statement will result in a syntax error 
and prevent your code from compiling.

5



Case Sensitivity

In C, one of the fundamental syntax rules is case sensitivity.
This means that C distinguishes between uppercase and lowercase letters.
For example, variables and function names in C are case-sensitive.
This means that myVariable and myvariable are treated as two different 
identifiers in C.
It's essential to use the correct case when referring to variables, functions, and 
other identifiers to avoid errors in your code.

6



Symbolic constants

Symbolic constants, also known as named constants or macros, are an 
essential feature in C that allow you to define meaningful names for values 
that do not change throughout your program. Instead of using literal values 
directly in your code, you can assign them to symbolic constants, which makes 
your code more readable, maintainable, and easier to update.

Symbolic constants are typically defined using the #define preprocessor 
directive, and they are often written in uppercase letters to distinguish them 
from variables.

7



Symbolic constants

Here's the basic syntax for defining a symbolic constant:
#define CONSTANT_NAME constant_value

For example, defining a symbolic constant for the value of pi:
#define PI 3.14159265359

Once defined, you can use the symbolic constant PI throughout your code 
wherever you need the value of pi, like this:

double radius = 5.0;
double circumference = 2 * PI * radius;

8



Advantages of symbolic Constants
Readability: using meaningful names like PI instead of raw numbers makes 
your code more self-explanatory and easier for others to understand.

Maintainability: if you need to change the value of a constant, you only have 
to update it in one place (the #define statement) rather than searching for and 
changing every occurrence of the literal value in your code.

Error Prevention: symbolic constants help prevent typos and errors caused by 
accidentally changing the value of a constant during maintenance.

Consistency: by using symbolic constants, you ensure that the same value is 
consistently used throughout your program, reducing the risk of 
inconsistencies and bugs.

9



Constants vs. Variables
It's important to note that symbolic constants, once defined, cannot be 
changed or modified during program execution. They remain constant 
throughout the program's lifetime. In contrast, variables can hold changing 
values. Symbolic constants are particularly useful for values that should not 
change, such as mathematical constants, configuration values, and flags.

An example in the next slide where MAX_SCORE is used as a symbolic constant 
to represent the maximum possible score, making the code more readable and 
maintainable.
Symbolic constants are a valuable tool in C programming for improving code 
quality, maintainability, and reliability. They help create code that is easier to 
understand, update, and debug.

10



Constants vs. Variables

#include <stdio.h>
#define MAX_SCORE 100
int main() {

int studentScore = 85;

if (studentScore > MAX_SCORE) {
printf("Error: Invalid score. Score should be less than or equal to %d\n", MAX_SCORE);

} else {
printf("Student score: %d\n", studentScore);

}

return 0;
}

11



Arithmetic operators
Arithmetic operators in C are used to perform various mathematical 
calculations on numeric operands. These operators allow you to carry out 
fundamental arithmetic operations like addition, subtraction, multiplication, 
division, and more. Here are the primary arithmetic operators in C:

Addition (+): The addition operator is used to add two values together.
Example:

int sum = 5 + 3; // sum is assigned the value 8
Subtraction (-): The subtraction operator is used to subtract the right operand 
from the left operand.
Example:

int difference = 10 - 4; // difference is assigned the value 6

12



Arithmetic operators
Multiplication (*): The multiplication operator is used to multiply two values.
Example:

int product = 6 * 7; // product is assigned the value 42
Division (/): The division operator is used to divide the left operand by the right 
operand. If both operands are integers, the result is truncated to an integer (the 
decimal part is discarded).
Example:

int quotient = 15 / 4; // quotient is assigned the value 3
Modulus (%): The modulus operator calculates the remainder when the left 
operand is divided by the right operand. It's often used to check for divisibility 
and to work with cyclical patterns.
Example:

int remainder = 15 % 4; // remainder is assigned the value 3
13



Arithmetic operators
Increment (++) and Decrement (--): These operators are used to increase or 
decrease the value of a variable by 1, respectively.
Example:

int num = 5;
num++; // num is incremented to 6
num--; // num is decremented back to 5

Compound Assignment Operators: C also provides compound assignment 
operators that combine an arithmetic operation with assignment in a single 
step. For example, += is equivalent to x = x + y, where x and y are variables.
Example:

int x = 10;
int y = 5;
x += y; // Equivalent to x = x + y, so x becomes 15

14



Arithmetic operators
Arithmetic operators are fundamental in C and are used extensively in 
mathematical calculations, expressions, and algorithms. They are essential for 
performing tasks ranging from simple arithmetic to complex mathematical 
computations in C programs.

Some exercises about arithmetic operators

15



Equality operators
In the C programming language, equality operators are used to compare two 
values and determine whether they are equal or not. These operators are 
essential for making decisions and controlling the flow of your program based 
on conditions. C provides two main equality operators: the equality operator 
(==) and the inequality operator (!=). Here's an explanation of how these 
operators work
The equality operator (==) is used to check if two values are equal.
It returns a Boolean result, either true (1) if the values are equal or false (0) if 
they are not. It is commonly used in conditional statements, such as if and 
while, to compare values.
It is important to note that == is a comparison operator, not an assignment 
operator. Using = for comparison will result in a syntax error.

16



Equality operators

int a = 5;
int b = 7;

if (a == b) {
printf("a is equal to b.\n");

} else {
printf("a is not equal to b.\n");

}

In this example, the == operator checks if a is equal to b and prints the 
appropriate message.

17



Equality operators

The inequality operator (!=) is used to check if two values are not equal.
It returns true (1) if the values are not equal and false (0) if they are equal.
Like the equality operator, it is used in conditional statements to test for 
inequality between variables or expressions.

int x = 10;
int y = 20;

if (x != y) {
printf("x is not equal to y.\n");

} else {
printf("x is equal to y.\n");

}
18



Equality operators

In the previous example, the != operator checks if x is not equal to y and prints 
the corresponding message.

Equality operators are fundamental for writing conditional logic in C. They allow 
you to make decisions based on whether values meet certain conditions, 
making your programs more versatile and adaptable. These operators can be 
used not only with numeric types but also with other data types, such as 
characters and pointers, to determine equality or inequality.

19



Equality operators

In the C programming language, the greater-than (>) and less-than (<) operators 
are used to compare two values and determine their relative order. These 
operators are essential for making decisions and controlling program flow 
based on conditions. Here's an explanation of how the greater-than and less-
than operators work:

The greater-than operator (>) is used to check if the value on the left is greater 
than the value on the right.
It returns a Boolean result, either true (1) if the left value is greater than the 
right value or false (0) if it's not.
This operator is often used in conditional statements to compare values.

20



Equality operators

int a = 5;
int b = 3;

if (a > b) {
printf("a is greater than b.\n");

} else {
printf("a is not greater than b.\n");

}

In this example, the > operator checks if a is greater than b and prints the 
appropriate message.

21



Equality operators

The less-than operator (<) is used to check if the value on the left is less than 
the value on the right.
Like the greater-than operator, it returns true (1) if the left value is less than the 
right value or false (0) if it's not.
It is commonly used in conditional statements to compare values.

int x = 10;
int y = 20;

if (x < y) {
printf("x is less than y.\n");

} else {
printf("x is not less than y.\n");

} 22



Equality operators

Greater-Than or Equal To Operator (>=) and Less-Than or Equal To Operator 
(<=):

In addition to the greater-than and less-than operators, C also provides 
"greater-than or equal to" (>=) and "less-than or equal to" (<=) operators.
The >= operator checks if the value on the left is greater than or equal to the 
value on the right.
The <= operator checks if the value on the left is less than or equal to the value 
on the right.
These operators are used when you want to include equality as a valid 
condition.

23



Equality operators
int p = 8;
int q = 8;
if (p >= q) {

printf("p is greater than or equal to q.\n");
} else {

printf("p is less than q.\n");
}

Greater-than and less-than operators are fundamental for writing conditional 
logic in C. They allow you to make decisions based on the relative order of 
values, making your programs more flexible and capable of handling different 
scenarios. These operators can be used with various data types, including 
numeric types and characters, to determine the relative order of values.

24



if-then-else
In the C programming language, the "if-then-else" statement is a fundamental 
control structure used to make decisions in your code. It allows you to execute 
different blocks of code based on a condition's evaluation. Here's an 
explanation of how the "if-then-else" statement works in C:
if Statement: The basic form of the "if" statement consists of the keyword "if" 
followed by a condition enclosed in parentheses. The condition is an expression 
that results in a boolean value (true or false). If the condition is true, the code 
block enclosed in curly braces immediately following the "if" statement is 
executed. If the condition is false, the code block is skipped.

if (condition) {
// Code to execute if the condition is true

}
25



if-then-else
else Statement: The "else" statement is used in conjunction with the "if" 
statement to specify a block of code to execute if the condition in the "if" 
statement is false. You can use "else" immediately after an "if" block, and its 
code block will be executed if the "if" condition is false.

if (condition) {
// Code to execute if the condition is true

} else {
// Code to execute if the condition is false

}

26



if-then-else
else if Statement: In many cases, you need to check multiple conditions in 
sequence. You can use "else if" statements to evaluate additional conditions 
after the initial "if" condition. The code block associated with the first true 
condition encountered will be executed, and subsequent "else if" conditions 
are not evaluated.

if (condition1) {
// Code to execute if condition1 is true

} else if (condition2) {
// Code to execute if condition2 is true

} else {
// Code to execute if neither condition1 nor condition2 is true

}
27



if-then-else
Here's a simple example to illustrate the use of "if-then-else" in C:

#include <stdio.h>
int main() {

int number = 5;
if (number > 0) {

printf("The number is positive.\n");
} else if (number < 0) {

printf("The number is negative.\n");
} else {

printf("The number is zero.\n");
}
return 0;

}
28



Loops in C programming
Loops are essential control structures in the C programming language allowing 
you to execute a block of code repeatedly and to create repetitive tasks and 
automate processes in your programs. They are used when you need to 
perform a specific task or set of tasks multiple times without writing the same 
code over and over. They are crucial for handling various programming 
challenges and scenarios.
Loops are powerful tools in C programming, and they are used extensively for 
tasks like iterating through arrays, processing data, and implementing 
algorithms. Understanding when and how to use each type of loop is essential 
for writing efficient and effective C programs.

C provides three main types of loops: for, while, and do-while.

29



for loop

The for loop is used when you know in advance how many times you want to 
execute a block of code. It consists of three parts:
• Initialization: Setting an initial value.
• Condition: A condition that determines whether to continue looping.
• Iteration: Updating the loop control variable.
Here's the basic structure of a for loop:

for (initialization; condition; iteration) {
// Code to be repeated

}
For example, to print numbers from 1 to 5:

for (int i = 1; i <= 5; i++) {
printf("%d\n", i);

} 30



while loop

The while loop is used when you want to execute a block of code as long as a 
condition is true. It checks the condition before entering the loop, which 
means the code inside the loop may never run if the condition is false from the 
start. Here's the basic structure of a while loop:

while (condition) {
// Code to be repeated

}
For example, to print all powers of 2 until you get over a thousand:

int result = 1;
while (result < 1000) {

printf(“power: %d\n“, result);
result = 2*result;

} 31



do-while loop
The do-while loop is similar to the while loop, but it guarantees that the code 
inside the loop is executed at least once because it checks the condition after 
executing the code block. Here's the basic structure of a do-while loop:

do {
// Code to be repeated

} while (condition);
For example, to print all powers of 2 until you get over a thousand:

int result = 1;
do {

printf(“power: %d\n“, result);
result *= 2;

}
while (result < 1000);

32



Loop Control Statements
In C, you can control loops using statements like break (to exit a loop 
prematurely).
In the example, we use a for loop to find the first even number in a given 
range. Once we find the first even number, we use the break statement to exit 
the loop early.

#include <stdio.h>
int main() {

int start = 1;
int end = 10;
for (int i = start; i <= end; i++) {

if (i % 2 == 0) {
printf("Found the first even number: %d\n", i);
break; // Exit the loop as soon as an even number is found

}
}
return 0;

} 33



Loop Control Statements
In C, you can control loops using statements like continue (to skip the rest of 
the current iteration and continue with the next).
In the example, we use a for loop to print all numbers in a given range except 
for those that are divisible by 3. We use the continue statement to skip the 
printing of numbers that meet the specified condition.

#include <stdio.h>
int main() {

int start = 1;
int end = 10;
for (int i = start; i <= end; i++) {

if (i % 3 == 0) {
continue; // Skip this iteration if the number is divisible by 3

}
printf("%d\n", i);

}
return 0;

} 34


