
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

Getting started - continue

2

Multiple Conditions
Write a C program that determines whether a given year is a leap year. The
program shall:

Prompt the user to enter a year.
Check if the year is divisible by 4 using the equality operator. If it is, proceed to
the next step.
Check if the year is not divisible by 100 using the inequality operator or if it is
divisible by 400 using the equality operator. If either condition is true, it's a leap
year.
Display a message indicating whether the year is a leap year or not.

35

Multiple Conditions
#include <stdio.h>

int main() {
int year;

printf("Enter a year: ");
scanf("%d", &year);

if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) {
printf("%d is a leap year.\n", year);

} else {
printf("%d is not a leap year.\n", year);

}

return 0;
} 36

Logical operators
In C programming, logical operators are used to perform logical operations on
boolean values (true or false) or to make decisions based on multiple
conditions. There are three main logical operators in C: && (logical AND), ||
(logical OR), and ! (logical NOT).

37

Logical operators
Logical AND (&&):
The logical AND operator (&&) combines two conditions and evaluates to true
only if both conditions are true.
If both conditions are true, the result is true. If either or both of the conditions
are false, the result is false.

int x = 5;
int y = 10;
if (x > 0 && y < 20) {

// This condition is true because both x > 0 and y < 20 are true.
}

38

Logical operators
Logical OR (||):
The logical OR operator (||) combines two conditions and evaluates to true if
at least one of the conditions is true.
If either condition is true, the result is true. The result is false only if both
conditions are false.

int a = 15;
int b = 7;
if (a > 10 || b < 5) {

// This condition is true because a > 10 is true, even though b < 5 is
false.
}

39

Logical operators

Logical NOT (!):
The logical NOT operator (!) is a unary operator that negates the value of a
single condition.
If a condition is true, ! makes it false, and if it's false, ! makes it true.

int flag = 1;
if (!flag) {

// This condition is true because !flag is equivalent to false.
}

40

Logical operators
Order of Evaluation:
C follows a short-circuit evaluation for logical operators. In &&, if the first
condition is false, the second condition is not evaluated, because the overall
result will be false regardless of the second condition. In ||, if the first
condition is true, the second condition is not evaluated, because the overall
result will be true regardless of the second condition.

Complex Conditions:
You can use logical operators to create complex conditions by combining
multiple subconditions. Parentheses are often used to clarify the order of
evaluation.

41

Logical operators
int m = 3;
int n = 7;
if ((m > 0 && n > 5) || (m < 0 && n < 10)) {

// This complex condition is true if either of the two sets of conditions is
true.
}

Practical Use Cases:
Logical operators are used for decision-making in conditional statements (if,
else, switch) and loops (while, for).
They are also used for combining conditions in search queries, validation
checks, and state machines, among other applications.

42

Data Types
Data types in C are a fundamental concept that specifies the type of data that a
variable can hold. C is a statically typed language, which means that variables
must be declared with their data type before they can be used. The choice of
data type determines the range of values a variable can store and the
operations that can be performed on it.
C provides several built-in data types, categorized into the following groups:

1. Basic Data Types
2. Derived Data Types
3. Enumeration Data Types
4. User-Defined Data Types
5. Void Data Type

43

Basic Data Types
• int: Represents integer values, both positive and negative. It is used to store

whole numbers (positive or negative) without decimal points. The size of an
int can vary depending on the compiler and architecture but is typically 4
bytes on most systems. Assuming 32-bit int, the range of values that an int
can hold is from -2,147,483,648 to 2,147,483,647.

• short: Represents a smaller integer. It is typically 2 bytes in size. The range
of values a short can hold is smaller than that of an int.

• long: Represents a larger integer than int. It is typically 4 or 8 bytes in size,
depending on the platform (32-bit or 64-bit). The range of values a long can
hold is much larger than that of an int.

44

Basic Data Types

• float: Represents single-precision floating-point numbers, which are used to
store real numbers with decimal points. It's typically 4 bytes in size. It has
limited precision, which means it may not represent some numbers with
complete accuracy.

• double: Represents double-precision floating-point numbers, providing
more significant digits than float. It's typically 8 bytes in size, offering more
significant digits and a larger range of representable values than the float
data type. double is commonly used when higher accuracy in floating-point
calculations is required.

45

Basic Data Types: char

• char: Represents a single character and is used to store characters like
letters, digits, symbols and control characters. It's typically 1 byte in size,
therefore it can represent 256 different values (2^8), which can cover the
ASCII character set.
• Internally, characters are represented as numeric values using character

encodings such as ASCII (American Standard Code for Information
Interchange) or UTF-8 (Unicode Transformation Format-8). In ASCII, for
example, the character 'A' is represented as the numeric value 65, 'B' is
66, and so on.

• To assign a character to a char variable, you can use single quotes. For
example:

char myChar = 'A';
46

Basic Data Types: char

• char can also be used to store special characters using escape sequences,
which are represented as backslashes followed by a character. For
example:

char newline = '\n'; // Represents a newline character
char tab = '\t'; // Represents a tab character

• To assign a character to a char variable, you can use single quotes. For
example:

char myChar = ‘A’;
• You can perform various operations on char variables, such as

comparison, addition, subtraction, and more. For example:

47

Basic Data Types: char

char a = 'A';
char b = 'B';
if (a < b) {

// This condition will be true because 'A' comes before 'B' in ASCII.
}

• char is also commonly used to create character arrays (strings) in C.
Strings in C are null-terminated arrays of char, where the null character
('\0') marks the end of the string.

The char data type in C is essential for working with characters and strings, and
it's used extensively in input/output operations, text processing, and other
tasks involving character-based data.

48

Derived Data Types
• Arrays: Collections of elements of the same data type, accessed by an index.

For example, int scores[5] creates an array of 5 integers.

• Pointers: Variables that store memory addresses, allowing you to
manipulate data indirectly. Pointers are used extensively in C for dynamic
memory allocation and data structures.

49

Derived Data Types: array

• Arrays: Collections of elements of the same data type, accessed by an index.

• Arrays in C are designed to store elements of the same data type. All
elements within an array must be of the same data type, such as
integers, characters, or floating-point numbers.

• Arrays have a fixed size, which is determined when the array is declared.
The size specifies how many elements the array can hold, and it cannot
be changed during the program's execution. The size of an array is
defined in square brackets [] following the array's name. For example, int
numbers[5] declares an array of integers with a size of 5.

50

Derived Data Types: array

• In C, array elements are accessed using zero-based indexing. This means
that the first element of an array is at index 0, the second element is at
index 1, and so on. You can access elements using square brackets and
the index, like this: element = array[index];

• Arrays can be declared and initialized at the same time. For instance:
int numbers[5] = {1, 2, 3, 4, 5};

You can also leave out the size when initializing an array, and the
compiler will determine the size based on the number of elements
provided:

int numbers[] = {1, 2, 3, 4, 5}; // The size is automatically set to 5

51

Derived Data Types: array

• To access individual elements, you use the array name followed by the
index in square brackets, like numbers[2] to access the third element of
the array numbers. It's essential to ensure that the index is within the
bounds of the array to avoid accessing memory outside the array, which
can lead to undefined behavior.

• Loops like for and while are commonly used to iterate through arrays to
perform operations on each element.

for (int i = 0; i < 5; i++) {
printf("%d\n", numbers[i]);

}

52

Derived Data Types: array

• C allows you to create multidimensional arrays, which are arrays of
arrays. For example, a 2D array can be thought of as a table with rows
and columns.

• Arrays are often used to store strings in C. Strings in C are character
arrays, typically terminated with a null character ('\0'), which marks the
end of the string.

• C provides various library functions for manipulating arrays, such as
memcpy(), memset(), and sort(), which can help you to perform common
array operations efficiently.

53

Derived Data Types: array

In summary, arrays in C are a versatile and fundamental data type for storing
collections of elements. They provide a convenient way to work with groups of
related data and are used extensively in C programming for tasks ranging from
simple data storage to complex data processing operations. Understanding
array indexing and memory management is crucial to use arrays effectively and
avoid common programming errors.

54

Derived Data Types: pointer

Pointers: In the C programming language, a pointer is a powerful and
fundamental data type that allows you to store memory addresses and
manipulate data indirectly. Pointers are a key feature of C, enabling dynamic
memory allocation, efficient array manipulation, and direct access to hardware
and other resources.

• Memory Addresses:

• A pointer is a variable that stores the memory address of another
variable or data object. It doesn't contain the actual data but points to
the location where the data is stored in memory.

55

Derived Data Types: pointer
• Declaration:

• Pointers are declared by specifying the data type they point to, followed
by an asterisk (*). For example:

int *ptr; // Declares a pointer to an integer

• Initialization:

• Pointers can be initialized with the address of a variable using the
address-of operator (&). For example:

int value = 42;
int *ptr = &value; // 'ptr' now points to the memory location of 'value'

56

Derived Data Types: pointer
• Pointer Arithmetic:

• Pointers support arithmetic operations such as addition and subtraction.
This is particularly useful when working with arrays and dynamic
memory allocation. For instance, incrementing a pointer moves it to the
next memory location for objects of its type.

• NULL Pointers:

• Pointers can also be set to a special value called NULL to indicate that
they don't currently point to any valid memory location. This is often
used as a safety measure to avoid accessing uninitialized pointers.

57

Derived Data Types: pointer

• Dynamic Memory Allocation:

• Pointers play a crucial role in dynamic memory allocation using functions
like malloc(), calloc(), and realloc(). These functions allocate memory at
runtime and return a pointer to the allocated memory.

• Function Pointers:

• C allows you to define and use function pointers, which are pointers that
point to functions instead of data. Function pointers are used for
callbacks, dynamic function selection, and creating extensible software.

58

Derived Data Types: pointer
• Pointer to Structures and Arrays:

• Pointers can be used to reference complex data structures like arrays
and structures. This allows for efficient access to and manipulation of
data elements within these structures.

• Pointer Safety and Pitfalls:

• While pointers provide great flexibility, they can also introduce certain
risks, such as null pointer dereferences, memory leaks, and dangling
pointers. Careful management and good programming practices are
essential to avoid these issues.

59

Derived Data Types: pointer

In summary, pointers are a fundamental concept in C, providing the ability to
access and manipulate memory directly. They are widely used for various tasks,
including dynamic memory management, data structures, and interacting with
hardware. While they offer great power, they also require responsibility and
care to use correctly and avoid common pitfalls.

60

Enumeration Data Types
• enum: In the C programming language, the enum (short for enumeration)

statement allows you to create a user-defined data type consisting of a set
of named integer constants. For instance, you can define an enumeration
for days of the week. Enums provide a way to create symbolic names for
values that are often used together or represent a finite set of related
options or states. Enumerations make the code more readable and
maintainable by replacing hard-coded integer values with meaningful
identifiers. Here's an explanation of how the enum statement works in C:

1. Declaring an Enum: To declare an enum, you use the enum keyword
followed by a user-defined type name and a pair of curly braces containing a
list of identifiers, known as "enumerators." Each enumerator corresponds to an
integer value, which is assigned sequentially starting from zero, unless explicitly
specified.

61

Enumeration Data Types
enum Color {

RED, // 0
GREEN, // 1
BLUE // 2

};
In this example, we've declared an enum called "Color" with three
enumerators: RED, GREEN, and BLUE. By default, RED is assigned the value 0,
GREEN is assigned 1, and BLUE is assigned 2.

2. Using Enums: Once you've defined an enum, you can use it to declare
variables, function parameters, or return types, just like any other data type.
Enum variables can only hold one of the enumerator values defined in the
enum.

62

Enumeration Data Types

enum Color favoriteColor = GREEN;

Here, we've declared a variable favoriteColor of type enum Color and assigned
it the value GREEN.

3. Custom Enumerator Values: You can explicitly assign values to enumerators
if you want to control their integer representation. This can be useful when you
need specific values for compatibility or other reasons.

63

Enumeration Data Types
enum Days {

MONDAY = 1,
TUESDAY = 2,
WEDNESDAY = 3,
THURSDAY = 4,
FRIDAY = 5,
SATURDAY = 6,
SUNDAY = 7

};

In this example, we've assigned custom values to the enumerators in the enum
Days.

64

Enumeration Data Types
4. Enum Constants: Enumerators are treated as constants in C, which means
they cannot be modified once defined. They are effectively read-only variables.

5. Enum Size: The size of an enum variable in memory is typically the size of an
int. However, this can vary depending on the compiler and platform. You can
use the sizeof operator to determine the size of an enum.

printf("Size of enum Color: %lu bytes\n", sizeof(enum Color));

6. Comparing Enums: You can compare enum values using equality operators
(==, !=) or use them in switch-case statements for conditional branching based
on the enum's value.

65

Enumeration Data Types

Enums are particularly useful when you want to make your code more self-
explanatory by replacing magic numbers with descriptive names, making it
easier to understand and maintain. They're commonly used in situations where
you have a fixed set of options or states, such as representing colors, days of
the week, error codes, and more.

66

User-Defined Data Types: struct
• struct: In C programming, a struct (short for "structure") is a composite data

type used to group together variables of different data types under a single
name. It allows you to create custom data structures to represent complex,
user-defined types. Structs are a fundamental part of C's ability to work with
structured data.

1. Structure Declaration:
A structure is defined using the struct keyword, followed by a name that
identifies the structure. Inside the curly braces, you specify the member
variables (fields) that the structure will contain.

67

User-Defined Data Types: struct
struct Student {

int studentID;
char name[50];
int age;

};

2. Creating Structure Variables:
Once a structure is defined, you can create variables of that structure type just
like any other data type.

struct Student student1; // Declaring a variable of type Student
You can also declare and initialize structure variables together:

struct Student student2 = {101, "John Doe", 20};

68

User-Defined Data Types: struct
3. Accessing Structure Members:
To access the members of a structure, you use the dot . operator.

student1.studentID = 102;
strcpy(student1.name, "Jane Smith");
student1.age = 21;

4. Nested Structures:
You can have structures within structures (nested structures). This allows you
to create more complex data structures.

69

User-Defined Data Types: struct
struct Date {

int day;
int month;
int year;

};

struct Employee {
int empID;
char empName[50];
struct Date hireDate;

};

70

User-Defined Data Types: struct

5. Passing Structures to Functions:

You can pass structures to functions by value or by reference (using pointers).
Passing by reference is often used when you want to modify the structure
within the function.

void displayStudent(struct Student s) {
printf("ID: %d, Name: %s, Age: %d\n", s.studentID, s.name, s.age);

}

71

User-Defined Data Types: struct

6. Size of Structures:

The size of a structure in memory is determined by the sum of the sizes of its
members. Padding may be added to align members in memory for efficiency.
You can use the sizeof operator to find the size of a structure.

7. Practical Use Cases:

Structs are widely used for organizing and manipulating data in C. They are
essential for tasks like representing complex records (e.g., students,
employees, products), creating linked lists, and handling data
serialization/deserialization.

72

User-Defined Data Types: struct

8. Typedef for Structures:

You can use typedef to create aliases for structure types, making the code
more readable and concise.

typedef struct {
int x;
int y;

} Point;

Structures in C are crucial for representing more complex data structures and
modeling real-world entities in your programs.

73

User-Defined Data Types: union

• union: In C programming, a union is a composite data type that is similar to
a struct in that it allows you to group together variables of different data
types under a single name. However, unlike a struct, a union can hold only
one of its members at a time. This characteristic makes union a unique and
space-efficient way to store and access data.

1. Union Declaration:
A union is defined using the union keyword, followed by a name that identifies
the union. Inside the curly braces, you specify the member variables (fields)
that the union will contain.

74

User-Defined Data Types: union
union CarInfo {

int carID;
float price;
char owner[50];

};

2. Creating Union Variables:
Once a union is defined, you can create variables of that union type, similar to
any other data type.

union CarInfo car1; // Declaring a variable of type CarInfo
You can also declare and initialize union variables together:

union CarInfo car2 = {101}; // Initializing with the carID

75

User-Defined Data Types: union

3. Accessing Union Members:
To access the members of a union, you use the dot . operator just like with
structures. However, unlike structures, only one member can be active at a
given time in a union.

car1.carID = 102; // carID is active
printf("Car ID: %d\n", car1.carID);

car1.price = 25000.50; // Now, price is active
printf("Car Price: %.2f\n", car1.price);

76

User-Defined Data Types: union

4. Practical Use Cases:
Unions are used when you want to efficiently use memory for a variable that
can have one of several data types at different times. For example, in a
database, you might want to store data for a single field (e.g., a car's ID, price,
or owner), but you only need to access one field at a time.

5. Size of Unions:

The size of a union is determined by the size of its largest member. The union
allocates enough memory to store the largest member. It does not store data
for all members simultaneously.

77

User-Defined Data Types: union
6. Typedef for Unions:
As with structures, you can use typedef to create aliases for union types,
making the code more readable and concise.

7. Limitations of Unions:
Due to their design, unions are not suitable for scenarios where you need to
store multiple pieces of data simultaneously. If you need to access multiple
members simultaneously, you should use a struct.

Use union data type when you need to use only one of several data types at a
given time. They are particularly useful in cases where you want to save
memory and are sure that only one member of the union will be active at any
given time.

78

Void Data Type
• void: Represents the absence of a data type. It is commonly used for

functions that do not return a value (void functions) and for pointers to
unspecified data types.

79

bool Data Type

• The bool data type, introduced in C99 with the <stdbool.h> header,
provides a convenient way to represent boolean values, which can be either
true or false.

• To use the bool data type, include the <stdbool.h> header at the beginning
of your C program.
• #include <stdbool.h>
• With the <stdbool.h> header included, you can declare boolean variables using the

bool keyword:
• bool isTrue = true;
• bool isFalse = false;

• In this example, isTrue is assigned the value true (1), and isFalse is assigned the value
false (0).

80

bool Data Type

• In C, true is defined as 1, and false is defined as 0. These are the only valid
values for boolean variables.

• You can use boolean operators such as && (logical AND), || (logical OR),
and ! (logical NOT) with boolean variables to perform logical operations.
• bool a = true;
• bool b = false;
• bool result = a && b; // result is false (0)

• The bool data type is commonly used for representing conditions and flags
in C programs. It helps improve code readability and maintainability by
making the intent of the variables more explicit.

81

bool Data Type
• Here's a practical example of using bool to check whether a number is even

or odd:
#include <stdio.h>
#include <stdbool.h>
bool isEven(int number) {

return(number % 2 == 0);
}
int main() {

int num = 7;
bool even = isEven(num);
if (even) {

printf("%d is even.\n", num);
} else {

printf("%d is odd.\n", num);
}
return 0;

}
82

bool Data Type

• While the bool data type is part of the C99 standard, some older C
compilers and environments may not fully support it. It's essential to verify
compiler compatibility and include the <stdbool.h> header when working
with boolean variables.

In summary, the bool data type in C, introduced with the <stdbool.h> header,
provides a convenient and standardized way to work with boolean values. It
improves code readability and allows you to represent conditions and flags
more explicitly in C programs.

83

Data Types

Choosing the appropriate data type is essential for efficient memory usage and
program correctness. Using the wrong data type can lead to unexpected
behavior and errors in your code. Understanding C's data types and their
characteristics is crucial for writing robust and efficient programs.

In C, data types are a fundamental building block for defining variables,
functions, and data structures, and they play a crucial role in how you
manipulate and store data in your programs.

84

