
COMPUTER ENGINEERING LABORATORY
Luigi Rizzo

luigi.rizzo@unipd.it
October 2023-January 2024

1

mailto:giovanni.dasanmartino@unipd.it

Miscellaneous

2

Miscellaneous

• External variables and scope

• Variables specific declarations

• Preprocessor directives

• Block structure

• Inizialization vs. declaration

• Recursion
3

Local variables in functions
In C programming, variables can have different scopes depending on where
they are declared/defined. The two primary types of variable scopes are global
and local. Additionally, the extern keyword is used to declare external
variables.

• Local variables are declared within a block or a function and are only
accessible within that block or function. They are not visible to other
functions or outside the block in which they are declared.
• Each local variable in a function comes into existence only when the

function is called and disappears when the function is exited. Such
variables are usually known as automatic variables.

4

Local Variables
Example of a local variable inside a function

int main() {
 // Local variable
 int localVariable = 10;
 // ...
 return 0;
}

Automatic variables come and go with function invocation, therefore, they do
not retain their values from one call to the next and shall be explicitly set upon
each entry. If they are not set, they will contain garbage.

5

Block scope
C supports block scope, where variables declared within a block of code (e.g.,
within loops or if statements) are only accessible within that specific block.

int main() {
if (condition) {

// Block scope
int blockVariable = 20;
// ...

}
// blockVariable is not accessible here
return 0;

6

Global variables
As an alternative to automatic variables, it is possible to define variables that are
external to all functions, that is, variables that can be accessed by name by any
function.

• Global variables are declared outside any function, typically at the beginning
of a C file or in a header file. They are accessible from any part of the
program, including all functions.

• Global variables, being globally accessible, can be used instead of argument
lists to communicate data between functions.

• Furthermore, because global variables remain in existence permanently,
rather than appearing and disappearing as functions are called and exited,
they retain their values even after the functions that set them have returned.

7

Global variables
// Global variable
int globalVariable;

int main() {
// Accessing the global variable
globalVariable = 42;
return 0;

}
A global (external) variable must be defined, exactly once, outside of any
function; this sets aside storage for it. The variable must also be declared in each
function that wants to access it; this states the type of the variable. The
declaration may be an explicit extern statement or may be implicit from context.

8

Global variables
// Global variable
int globalVariable;

int main() {
// Accessing the global variable
globalVariable = 42;
anyFunction();

return 0;
}
void anyFunction() {

extern int globalVariable;
…

}
9

External variables
In certain circumstances, the extern declaration can be omitted.

• If the definition of the external variable occurs in the source file before its use
in a particular function, then there is no need for an extern declaration in the
function.

• In fact, common practice is to place definitions of all external variables at the
beginning of the source file, and then omit all extern declarations.

But, if the program is in several source files, and a variable is defined in file1 and
used in file2 and file3, then extern declarations are needed in file2 and file3 to
connect the occurrences of the variable.

10

External variables
External variables have external linkage, meaning their declarations are shared
across multiple files. The actual variable is defined in one file (without the
extern keyword), and its declaration (with extern) is included in other files.

// File: file1.c
int globalVariable; // Definition

// File: file2.c
extern int globalVariable; // Declaration

// File: file3.c
extern int globalVariable; // Declaration

11

External variables
The usual practice is to collect extern declarations of variables and functions in a
separate file, historically called a header, that is included by #include at the front
of each source file. The suffix .h is conventional for header names.
External variables can be accessed in any file where their declaration (with
extern) is visible. This allows different parts of a program to share and modify
the same variable.

// File: main.c
extern int globalVariable; // Declaration
int main() {

// Accessing the global variable
globalVariable = 100;
return 0;

} 12

External variables: considerations
• Initialization:

• External variables should be initialized in one source file, and their
declarations (with extern) should be included in other files where they are
used.

• Order of Declarations:
• Declarations shall appear before the variable is used.

• Avoid Global Variables When Possible:
• While global variables and external variables provide a means for sharing

data, excessive use can lead to code that is harder to maintain and reason
about. It's often preferable to pass data between functions explicitly.

13

External variables: considerations
• External variables are always there even when you don't want them.

Relying too heavily on external variables leads to programs whose data
connections are not all obvious - variables can be changed in unexpected
and even inadvertent ways, and the program is hard to modify.

You should have noted that we have used the words definition and declaration
when referring to external variables.``Definition'' refers to the place where the
variable is created or assigned storage. ``Declaration'' refers to places where
the nature of the variable is stated but no storage is allocated.

14

External variables: scope rules
The scope of a name is the part of the program within which the name can be
used.
• For an automatic variable declared at the beginning of a function, the scope

is the function in which the name is declared.
• Local variables of the same name in different functions are unrelated.
• The same is true of the parameters of the function, which are in effect local

variables.
• The scope of an external variable or a function goes from the point at which

it is declared to the end of the file being compiled.
• On the other hand, if an external variable is to be referred to before it is

defined, or if it is defined in a different source file from the one where it is
being used, then an extern declaration is mandatory.

15

External variables: scope rules

• It is important to distinguish between the declaration of an external variable
and its definition.

• A declaration announces the properties of a variable (primarily its type); a
definition also causes storage to be set aside.

• There must be only one definition of an external variable among all the files
that make up the source program; other files may contain extern declarations
to access it. (There may also be extern declarations in the file containing the
definition).

• Array sizes must be specified with the definition but are optional with an
extern declaration.

• Initialization of an external variable goes only with the definition.

16

Header files

There is one thing to worry about - the declarations shared among files.

As much as possible, it is preferable to centralize this stuff, so that there is only
one copy to get and keep updated as the program evolves.

We will place this common material in a header file, which will be included as
necessary by using the #include directive.

As far as possible put variables and functions declarations in header files to be
included in your program source files.

17

External variables: summary

External variables are defined outside of any function and are thus available to
many functions. Functions themselves are always external, because C does not
allow functions to be defined inside other functions. By default, external
variables and functions have the property that all references to them by the
same name are references to the same thing. (The standard calls this
property external linkage). Because external variables are globally accessible,
they provide an alternative to function arguments and return values for
communicating data between functions. Any function may access an external
variable by referring to it by name, if the name has been declared somehow.
If a large number of variables must be shared among functions, external
variables are more convenient and efficient than long argument lists.

18

Static variables

In C programming, there are other types of variables beyond the typical
automatic variables (local variables). These include static, register and constants
variables.

In C programming, the static keyword is used to declare static variables. Static
variables have a different behavior compared to regular, automatic variables.
Which are the key characteristics and use cases for static variables?

• Preservation of Value
• Lifetime
• Internal Linkage

19

Static variables key characteristics

Preservation of Value:
Static variables retain their values between function calls. The value is initialized
only once, and subsequent calls to the function will use the updated value.

Lifetime:
Static variables have a lifetime equal to the entire duration of the program. They
are created when the program starts and exist until the program terminates.

Internal Linkage:
By default, static variables have internal linkage, meaning they are visible only
within the same source file. If declared outside any function, they are also
restricted to the file they are declared in.

20

Static variables key characteristics
#include <stdio.h>

void exampleFunction() {
// Static variable with internal linkage
static int staticVar = 0;

// Increment and print the static variable
staticVar++;
printf("Static Variable: %d\n", staticVar);

}

int main() {
// Call the function multiple times
exampleFunction();
exampleFunction();
exampleFunction();

return 0;
} 21

Static Variable: 1
Static Variable: 2
Static Variable: 3

Static variables use cases

Maintaining State:
Static variables are often used to maintain state across multiple calls to the same
function. For example, a counter in a function that needs to remember its value
between calls.
Avoiding Name Clashes:
When declared with internal linkage, static variables can be used to avoid
naming conflicts between variables in different files. Each file can have its own
static variable with the same name.
Initialization Control:
Static variables can be used to control the initialization of a variable. For
instance, initializing a variable only once during the first call to a function.

22

Static variables external linkage

If you want a static variable to have external linkage (i.e., be visible across
multiple source files), you can use the extern keyword in the declaration. This
will work well if the declaration is in a header file that is included in multiple
source files.

23

// File: example.h
extern int globalStaticVar;

// File: example.c
#include "example.h"
static int globalStaticVar = 0;

void exampleFunction() {
 globalStaticVar++;
 printf("Global Static Variable: %d\n", globalStaticVar);
}

In this example, globalStaticVar has
external linkage and is shared
across multiple source files.

Register variables

In C programming, the register keyword is used to declare register variables.
Register variables are a way to provide a hint to the compiler that a particular
variable should be stored in a register for faster access.

Which are the key characteristics and use cases for register variables?

• Storage in CPU Register
• Compiler Discretion
• Limited Use Cases
• No Direct Memory Access

24

Register variables key characteristics

Storage in CPU Register
The register keyword suggests to the compiler that the variable should be stored
in a CPU register rather than in memory. Registers are faster to access than
memory locations.

Compiler Discretion
The register keyword is a hint, and the compiler is not obligated to honor it.
Modern compilers are often capable of making intelligent decisions about
register allocation without explicit hints from the programmer.

25

Register variables key characteristics

Limited Use Cases
The effectiveness of register variables is often dependent on the architecture
and optimization capabilities of the compiler. They are most beneficial for
frequently accessed variables in tight loops or critical sections where speed is
crucial.

No Direct Memory Access
Register variables cannot be directly accessed using the address-of (&) operator,
as they are intended to be stored in registers rather than memory. Attempting
to take the address of a register variable may result in a compilation error.

26

Register variables use cases

Performance Optimization
Register variables are used in performance-critical sections of code where
reducing memory access times is crucial for improving execution speed.

Frequent Access
Variables that are accessed frequently in loops or computations may benefit
from being declared as register variables.

27

Register variables example
#include <stdio.h>

void computeSum() {
// Register variables for faster access
register int i, sum = 0;

// Loop to compute the sum
for (i = 1; i <= 100; ++i) {

sum += i;
}

printf("Sum: %d\n", sum);
}

int main() {
// Call the function
computeSum();

return 0;
} 28

In this example, the i and sum variables
are declared as register variables within
the computeSum function. The compiler
may choose to store these variables in
registers for faster access during the
loop.

Register variables usage considerations

29

Compiler Optimization
Modern compilers often perform sophisticated optimizations, and the use of
the register keyword may not significantly impact performance. It's advisable
to rely on compiler optimizations and profile your code to identify actual
bottlenecks.

Compiler Warnings
Some compilers may issue a warning if they choose to ignore the register
keyword. Always pay attention to compiler warnings and consider alternatives
if necessary.

Register variables usage considerations

30

Use with Caution
Overusing register variables or using them inappropriately may hinder the
compiler's ability to optimize code. It's important to profile and test your code
to ensure that the use of register variables provides a measurable performance
improvement.

In summary, register variables in C are a way to suggest to the compiler that
certain variables should be stored in registers for faster access. However, their
impact on performance can vary, and reliance on compiler optimizations is
often sufficient for achieving good performance in modern C programs.

Constant variables

31

In C programming, constant variables are declared using the const keyword.
Constant variables represent values that should not be modified during the
program's execution.

Which are the key characteristics and use cases for constant variables?

• Immutability
• Initialization at Declaration

Constant variables key characteristics

32

Immutability:
Constant variables are read-only, meaning their values cannot be modified
after initialization. Any attempt to modify a constant variable will result in a
compilation error.

Initialization at Declaration:
Constant variables must be initialized at the time of declaration. Once
initialized, their values cannot be changed.

Constant variables use cases

33

Symbolic Constants:
Constants are often used to define symbolic names for values that remain
constant throughout the program. This improves code readability and makes it
easier to maintain.

Preventing Unintended Modifications:
Constant variables help prevent unintentional modifications of values. By
marking a variable as constant, you signal your intent that the value should not
be changed.

Constant variables use cases

34

Improved Code Understanding:
Constants with meaningful names enhance code understanding. For example,
using const int DAYS_IN_WEEK = 7; makes the code more readable than using
the literal value 7 throughout the program.

Global Constant Variables:
Constants can be declared globally, making them accessible across multiple
functions or translation units.

Constant variables use cases

35

// Global constant variable
const double PI = 3.14159;

void printCircleArea(double radius) {
 // Using the global constant variable
 double area = PI * radius * radius;
 printf("Circle Area: %f\n", area);
}

int main() {
 // Calling a function that uses the global constant
 printCircleArea(5.0);

 return 0;
}

Constant variables in enumeration

36

Enumerations provide a way to create a set of named integer constants.
Enumerated constants are also known as enumerators. In the following
example, SUNDAY, MONDAY, etc., are constants within the enumeration Days.

#include <stdio.h>

// Enumeration with named constants
enum Days { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY };

int main() {
// Using enumerated constants
enum Days today = TUESDAY;
printf("Today is %d\n", today);

return 0;
}

Constant variables considerations

37

Initialization Requirement:
Constant variables must be initialized at the time of declaration. Unlike regular
variables, you cannot assign a value to a constant variable later in the program.

Compile-Time Constants:
Constant variables are evaluated at compile time. This means that the
compiler knows their values during the compilation process.

Use of #define:
In addition to const, constants can also be defined using preprocessor
directives, such as #define. However, using const is generally preferred as it
provides type checking.

Difference between #define and const in C?

38

#define is a preprocessor directive. Data defined by the #define macro
definition are preprocessed, so that your entire code can use it. This can free
up space and increase compilation times.
const variables are considered variables, and not macro definitions.
In short, CONSTs are handled by the compiler, #DEFINEs are handled by the
pre-processor.

The big advantage of const over #define is type checking. #defines can’t be
type checked, so this can cause problems when trying to determine the data
type. If the variable is, instead, a constant then we can grab the type of the
data that is stored in that constant variable.

Difference between #define and const in C?

39

#define const
#define is a preprocessor directive. Constants are used to make variables

constant such that never change during
execution once defined.

Is used to define a substitution. The constant variable value is used in the
program.

Its syntax is -:
#define token value

Its syntax is -:
const type constant_name;

It shall not be terminated with a (;)
semicolon

It shall be terminated with a (;) semicolon

Difference between #define and const in C?

40

Since const are considered variables, we can use pointers on them. This means
we can typecast, move addresses, and everything else you’d be able to do with
a regular variable besides change the data itself, since the data assigned to
that variable is constant.

In general, const is a better option if we have a choice and it can successfully
apply to the code. There are situations when #define cannot be replaced by
const. For example, #define can take parameters (the parameters are not
checked for data type). #define can also be used to replace some text in a
program with another text.

#define parameters usage

41

For example, the following macro INCREMENT(x) can be used for x of any data
type.

#include <stdio.h>
#define INCREMENT(x) ++x
int main()
{

char* ptr = “Example";
int x = 10;
printf("%s ", INCREMENT(ptr));
printf("%d", INCREMENT(x));
return 0;

}

Output:
xample 11

#define parameters usage

42

The macro arguments are not evaluated before macro expansion.

#include <stdio.h>
#define MULTIPLY(a, b) a* b
int main()
{

// The macro is expanded as 2 + 3 * 3 + 5, not as 5*8
printf("%d", MULTIPLY(2 + 3, 3 + 5));
return 0;

}

Output:
16

#define parameters usage

43

The previous problem can be solved using parenthesis.

#include <stdio.h>
// here, instead of writing a*a we write (a)*(b)
#define MULTIPLY(a, b) (a) * (b)
int main()
{

// The macro is expanded as (2 + 3) * (3 + 5), as 5*8
printf("%d", MULTIPLY(2 + 3, 3 + 5));
return 0;

}

Output:
40

#define parameters usage

44

#include <stdio.h>

#define square(x) x* x
int main()
{

// Expanded as 36/6*6
int x = 36 / square(6);
printf("%d", x);
return 0;

}

Output:
36

#include <stdio.h>

#define square(x) (x * x)
int main()
{

// Expanded as 36/(6*6)
int x = 36 / square(6);
printf("%d", x);
return 0;

}

Output:
1

#define parameters usage

45

The parameters passed to macros
can be concatenated using operator
called Token-Pasting operator.

#include <stdio.h>
#define merge(a, b) a##b
int main()
{

printf("%d ", merge(12, 34));
}

Output:
1234

A token passed to macro can be converted
to a string literal by using # before it.

#include <stdio.h>
#define get(a) #a
int main()
{

// Example is changed to “Example"
printf("%s", get(Example));

}

Output:
Example

#define usage

46

The macros can be written in multiple lines using ‘\’. The last line doesn’t have ‘\’.
#include <stdio.h>
#define PRINT(i, limit) \

while (i < limit) { \
printf(“Example "); \
i++; \

}
int main()
{

int i = 0;
PRINT(i, 3);
return 0;

}
Output:
Example Example Example

#define usage

47

Preprocessors also support if-else directives which are typically used for conditional
compilation.

int main()
{
#if VERBOSE >= 2

printf("Trace Message");
#endif
}

A header file may be included more than one time directly or indirectly, this leads to
problems of redeclaration of same variables/functions. To avoid this problem, directives
like #define, #ifdef and #ifndef are used.

#define usage

48

#include <stdio.h>

// Uncomment one of the following lines to enable or disable DEBUG mode
#define DEBUG

#ifdef DEBUG
#define DEBUG_PRINT(msg) printf("Debug: %s\n", msg)

#else
#define DEBUG_PRINT(msg)

#endif

#ifndef RELEASE
#define RELEASE

#endif

int main() {
DEBUG_PRINT("This is a debug message.");

#ifdef RELEASE
printf("Release mode: This code is included.\n");

#else
printf("Release mode: This code is excluded.\n");

#endif

return 0;
}

Output:
Debug: This is a debug message.
Release mode: This code is included.

In this example:

DEBUG can be defined to enable debug mode (printing debug
messages).
RELEASE is conditionally defined using #ifndef, making it
defined if not already defined.
You can experiment with commenting or uncommenting the
#define DEBUG line to observe the changes in the output.

These directives are commonly used to create flexible and
maintainable code by allowing conditional inclusion or exclusion
of specific code sections based on compile-time configurations.

#define usage

49

There are some standard macros which can be used to print program file (__FILE__), Date of
compilation (__DATE__), Time of compilation (__TIME__) and Line Number in C code
(__LINE__)

Output:
Current File :C:\myProgramFolder\myProgram.cpp
Current Date :Nov 12 2023
Current Time :19:11:41
Line Number :8

#include <stdio.h>

int main()
{

printf("Current File :%s\n", __FILE__);
printf("Current Date :%s\n", __DATE__);
printf("Current Time :%s\n", __TIME__);
printf("Line Number :%d\n", __LINE__);
return 0;

}

#define usage

50

We can remove already defined macros using : #undef MACRO_NAME
#include <stdio.h>
// div function prototype
float div(float, float);
#define div(x, y) x / y

int main()
{

// use of macro div
// Note: %0.2f for taking two decimal value after point
printf("%0.2f", div(10.0, 5.0));

// removing defined macro div
#undef div

// function div is called as macro definition is removed
printf("\n%0.2f", div(10.0, 5.0));
return 0;

}

// div function definition
float div(float x, float y) { return y / x; }

Block structure

C is not a block-structured language, because functions may not be defined
within other functions. On the other hand, variables can be defined in a block-
structured fashion within a function.

Declarations of variables (including initializations) may follow the left brace that
introduces any compound statement, not just the one that begins a function.
Variables declared in this way hide any identically named variables in outer
blocks and remain in existence until the matching right brace.

An automatic variable declared and initialized in a block is initialized each time
the block is entered

51

Block structure
Automatic variables, including formal parameters, also hide external variables
and functions of the same name. Given the declarations

int x;
int y;
f(double x)
{

double y;
}

then within the function f, occurrences of x refer to the parameter, which is a
double; outside f, they refer to the external int. The same is true of the variable
y. As a matter of style, it's best to avoid variable names that conceal names in
an outer scope; the potential for confusion and error is too great.

52

Inizialization
In the absence of explicit initialization, external and static variables are
guaranteed to be initialized to zero; automatic and register variables have
undefined (i.e., garbage) initial values.

Scalar variables may be initialized when they are defined, by following the
name with an equals sign and an expression:

int x = 1;
char squota = '\'';
long day = 1000L * 60L * 60L * 24L; /* milliseconds/day */

For external and static variables, the initializer must be a constant expression;
the initialization is done once, before the program begins execution.

53

Inizialization
For automatic and register variables, the initializer is not restricted to being a
constant: it may be any expression involving previously defined values, even
function calls.

int binsearch(int x, int v[], int n)
{

int low = 0;
int high = n - 1;
int mid;
...

}
instead of

int low, high, mid;
low = 0;
high = n - 1;

54

Inizialization
Initialization of automatic variables are just shorthand for assignment
statements.
Explicit assignments are more easily understood because initializers in
declarations are harder to see.
An array may be initialized by following its declaration with a list of initializers
enclosed in braces and separated by commas.

For example, to initialize an array days with the number of days in each month:
int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

When the size of the array is omitted, the compiler will compute the length by
counting the initializers, of which there are 12 in this example.

55

Inizialization
If there are fewer initializers for an array than the specified size, the others will
be zero for external, static and automatic variables.
It is an error to have too many initializers.

Character arrays are a special case of initialization; a string may be used instead
of the braces and commas notation:

char pattern = “hello";
is a shorthand for the longer but equivalent

char pattern[] = { ‘h', ‘e', 'l', ‘l’, ‘o’ , '\0' };

In this case, the array size is six (five characters plus the terminating '\0').

56

Recursion

C functions may be used recursively; that is, a function may call itself either
directly or indirectly.
When a function calls itself recursively, each invocation gets a fresh set of all
the automatic variables, independent of the previous set.
Recursion may provide no saving in storage, since somewhere a stack of the
values being processed must be maintained. Nor will it be faster.
But recursive code is more compact, and often much easier to write and
understand than the non-recursive equivalent.
Recursion is especially convenient for recursively defined data structures like
trees, that we will see later in the course.
Let’s see some typical examples of recursive functions in C.

57

Factorial Calculation
#include <stdio.h>

// Recursive factorial function
int factorial(int n) {

// Base case: factorial of 0 is 1
if (n == 0 || n == 1) {

return 1;
} else {

// Recursive case: n! = n * (n-1)!
return n * factorial(n - 1);

}
}

int main() {
int number = 5;
printf("Factorial of %d is %d\n", number, factorial(number));
return 0;

}
58

The factorial of a non-negative
integer n is the product of all positive
integers less than or equal to n.

Fibonacci Sequence
#include <stdio.h>

// Recursive Fibonacci function
int fibonacci(int n) {

// Base case: Fibonacci of 0 is 0, and Fibonacci of 1 is 1
if (n == 0) {

return 0;
} else if (n == 1) {

return 1;
} else {

// Recursive case: F(n) = F(n-1) + F(n-2)
return fibonacci(n - 1) + fibonacci(n - 2);

}
}

int main() {
int term = 6;
printf("Fibonacci term at position %d is %d\n", term, fibonacci(term));
return 0;

}
59

The Fibonacci sequence is a series
of numbers where each number is
the sum of the two preceding ones.

Binary Search
#include <stdio.h>

// Recursive binary search function
int binarySearch(int arr[], int low, int high, int target) {

if (low <= high) {
int mid = low + (high - low) / 2;

// Base case: target found at mid
if (arr[mid] == target) {

return mid;
}

// Recursive case: search in the left or right half
if (arr[mid] > target) {

return binarySearch(arr, low, mid - 1, target);
} else {

return binarySearch(arr, mid + 1, high, target);
}

}

// Base case: target not found
return -1;

} 60

Binary search is an algorithm
that finds the position of a target
value within a sorted array.

int main() {
 int sortedArray[] = {2, 4, 6, 8, 10, 12, 14, 16};
 int target = 10;
 int size = sizeof(sortedArray) / sizeof(sortedArray[0]);

 int result = binarySearch(sortedArray, 0, size - 1, target);

 if (result != -1) {
 printf("Target %d found at position %d\n", target, result);
 } else {
 printf("Target %d not found in the array\n", target);
 }

 return 0;
}

	COMPUTER ENGINEERING LABORATORY
	Miscellaneous
	Miscellaneous
	Local variables in functions
	Local Variables
	Block scope
	Global variables
	Global variables
	Global variables
	External variables
	External variables
	External variables
	External variables: considerations
	External variables: considerations
	External variables: scope rules
	External variables: scope rules
	Header files
	External variables: summary
	Static variables
	Static variables key characteristics
	Static variables key characteristics
	Static variables use cases
	Static variables external linkage
	Register variables
	Register variables key characteristics
	Register variables key characteristics
	Register variables use cases
	Register variables example
	Register variables usage considerations
	Register variables usage considerations
	Constant variables
	Constant variables key characteristics
	Constant variables use cases
	Constant variables use cases
	Constant variables use cases
	Constant variables in enumeration
	Constant variables considerations
	Difference between #define and const in C?
	Difference between #define and const in C?
	Difference between #define and const in C?
	#define parameters usage
	#define parameters usage
	#define parameters usage
	#define parameters usage
	#define parameters usage
	#define usage
	#define usage
	#define usage
	#define usage
	#define usage
	Block structure
	Block structure
	Inizialization
	Inizialization
	Inizialization
	Inizialization
	Recursion
	Factorial Calculation
	Fibonacci Sequence
	Binary Search

