WILEY

Organic Chemistry Third Edition

David Klein

Chapter 4 Alkanes and Cycloalkanes

Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

4.2 IUPAC Nomenclature - Alkanes

- The **IUPAC** system **systematic** naming of compounds
- IUPAC name includes:
 - Parent name (longest carbon chain)
 - Names of substituents
 - Location of substituents

1. Identify the **parent chain** - the longest consecutive chain of carbons

Parent has 9 carbon atoms

1. Identify the **parent chain** - the longest consecutive chain of carbons

If there is more than one possible parent chain, choose the one with the most substituents attached

TABLE 4.1 PARENT NAMES FOR ALKANES

NUMBER OF CARBON ATOMS	PARENT	NAME OF ALKANE	NUMBER OF CARBON ATOMS	PARENT	NAME OF ALKANE
1	meth	methane	11	undec	undecane
2	eth	ethane	12	dodec	dodecane
3	prop	propane	13	tridec	tridecane
4	but	butane	14	tetradec	tetradecane
5	pent	pentane	15	pentadec	pentadecane
6	hex	hexane	20	eicos	eicosane
7	hept	heptane	30	triacont	triacontane
8	oct	octane	40	tetracont	tetracontane
9	non	nonane	50	pentacont	pentacontane
10	dec	decane	100	hect	hectane

1. Identify the **parent chain** - the longest consecutive chain of carbons

If the parent chain is cyclic, add the prefix "cyclo"

• Practice with Skillbuilder 4.1

Practice the Skill 4.1 – Identify and name the parent in each of the following compounds

Identify and name the substituents

TABLE 4.2 NAMES OF ALKYL GROUPS				
NUMBER OF CARBON ATOMS IN SUBSTITUENT	TERMINOLOGY			
1	methyl			
2	ethyl			
3	propyl			
4	butyl			
5	pentyl			
6	hexyl			
7	heptyl			
8	octyl			
9	nonyl			
10	decyl			

2.

2. Identify and name the substituents

Substituents end in yl instead of ane.

TABLE 4.2 NAMES OF ALKYL GROUPS				
NUMBER OF TERMINOLOGY CARBON ATOMS IN SUBSTITUENT				
1	methyl			
2	ethyl			
3	propyl			
4	butyl			
5	pentyl			
6	hexyl			
7	heptyl			
8	octyl			
9	nonyl			
10	decyl			

2. Identify and name the substituents

A ring can be either a parent chain or a substituent depending on the number of carbons

Practice with Skillbuilder 4.2

Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

- 2. Identify and name the substituents
 - For substituents with complex branches

- 1. Number the longest carbon chain WITHIN the substituent. Start with the carbon attached to the parent chain
- 2. Name the substituent (in this case butyl)
- 3. Name and Number the substituent's side group (in this case 2methyl)

The name of the substituent is (2-methylbutyl)

- 2. Identify and name the substituents
 - Some branched substituents have common names
 - Two types of propyl groups

Branched alkyl group with 3 carbon atoms

- 2. Identify and name the substituents
 - Some branched substituents have **common** names
 - Three types of butyl groups

• Practice with Skillbuilder 4.3

• Carbons in the parent chain have to be **numbered**

• **2-methyl**pentane means there is a **methyl** group on **carbon #2** of the pentane chain

- Guidelines to follow when numbering the parent chain
 - 1. If ONE substituent is present, number the parent chain so that the substituent has the lowest number possible

- Guidelines to follow when numbering the parent chain
 - 2. When multiple substituents are present, number the parent chain to give the first substituent the lowest number possible

- Guidelines to follow when numbering the parent chain
 - 3. If there is a tie, then number the parent chain so that the second locant gets the lowest number possible

- Guidelines to follow when numbering the parent chain
 - 4. If there is no other tie-breaker, then assign the lowest number alphabetically

- Guidelines to follow when numbering the parent chain
 - The same rules apply for cycloalkanes

To assemble the complete name:

- 1. Put the # and name of each substituent before the parent chain name, *in alphabetical order*
- 5. A prefix is used (di, tri, tetra, penta, etc.) if multiple substituents are identical.

note: "di" or "tri" is ignored when alphabetizing the substituents

4.2 IUPAC Rules - Summary

- 1. Identify the parent chain
- 2. Identify and Name the substituents
- 3. Number the parent chain; assign a locant to each substituent
- 4. List the numbered substituents before the parent name in alphabetical order

• Practice with SkillBuilder 4.4

4.2 IUPAC Rules - Summary

• Following the rules, we can name the following compound:

1-tert-butyl-2-ethyl-4,4-dimethylcyclohexane

4.2 Naming Bicyclic Compounds

• **Bicyclic** compound contains two fused rings.

• To name a bicyclic compound, include the prefix **bicyclo** in front of the parent name

4.2 Naming Bicyclic Compounds

- The two carbons where the rings are fused are **bridgehead** carbons
- There are three "paths" connecting the bridgeheads. Count the number of carbons in each path to name the compound

Bridgehead

Bridgehead

Bicyclo[3.1.1]heptane

Bicyclo[2.2.1]heptane

• Practice with Skillbuilder 4.5

- ISOMERS
 - different structures, same molecular formula
- CONSTITUTIONAL ISOMERS
 - different connectivity of atoms

$$\sim$$

• As the number of carbon atoms increases, the number of constitutional isomers increases

TABLE 4.4 NUMBER OF CONSTITUTIONAL ISOMERS FOR VARIOUS ALKANES				
MOLECULAR FORMULA	NUMBER OF CONSTITUTIONAL ISOMERS			
C ₃ H ₈	1			
C ₄ H ₁₀	2			
C ₅ H ₁₂	3			
C ₆ H ₁₄	5			
C ₇ H ₁₆	9			
C ₈ H ₁₈	18			
C ₉ H ₂₀	35			
C ₁₀ H ₂₂	75			
C ₁₅ H ₃₂	4,347			
C ₂₀ H ₄₂	366,319			
C ₃₀ H ₆₂	4,111,846,763			
C ₄₀ H ₈₂	62,481,801,147,341			

Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

 Be able to recognize different structures as either being isomers, or being the same compound.

- You can test if structures are the same in two ways:
 - 1. Flip one of the molecules in 3D space and rotate around its single bonds until it is super-imposable on the other molecule
 - 2. Name them. If they have the same IUPAC name, they are the same compound

180° rotation along the C3 – C4 bond would make it more obvious these two compounds are the same

- Following IUPAC rules for naming yields the same name as well
- Practice with SkillBuilder 4.6