Bruice, capitolo 2 – nomenclatura alcani (note)

- alcani
- disegnare le molecole organiche
- nomenclatura dei sostituenti alchilici
- gruppi funzionali
- nome → struttura
- struttura → nome
- cicloalcani, alogenuri alchilici, eteri, alcoli, ammine
- struttura e proprietà fisiche di alcani, alogenuri alchilici, eteri, alcoli, ammine
- la conformazione degli alcani e cicloalcani

Tabella 2.1 Nomenclatura e proprietà fisiche di alcani lineari						
Numero di carboni	Formula molecolare	Nome	Struttura condensata	Punto di ebollizione (°C)	Punto di fusione (°C)	Densità ^a (g/mL)
1	CH ₄	metano	CH ₄	-167.7	-182.5	
2	C_2H_6	etano	CH ₃ CH ₃	-88.6	-183.3	
3	C_3H_8	propano	CH ₃ CH ₂ CH ₃	-42.1	-187.7	
4	C_4H_{10}	butano	CH ₃ CH ₂ CH ₂ CH ₃	-0.5	-138.3	
5	C_5H_{12}	pentano	$CH_3(CH_2)_3CH_3$	36.1	-129.8	0.5572
6	C_6H_{14}	esano	CH ₃ (CH ₂) ₄ CH ₃	68.7	-95.3	0.6603
7	C_7H_{16}	eptano	CH ₃ (CH ₂) ₅ CH ₃	98.4	-90.6	0.6837
8	C_8H_{18}	ottano	$CH_3(CH_2)_6CH_3$	125.7	-56.8	0.7026
9	C_9H_{20}	nonano	CH ₃ (CH ₂) ₇ CH ₃	150.8	-53.5	0.7177
10	$C_{10}H_{22}$	decano	$CH_3(CH_2)_8CH_3$	174.0	-29.7	0.7299
11	$C_{11}H_{24}$	undecano	CH ₃ (CH ₂) ₉ CH ₃	195.8	-25.6	0.7402
12	$C_{12}H_{26}$	dodecano	CH ₃ (CH ₂) ₁₀ CH ₃	216.3	-9.6	0.7487
13	$C_{13}H_{28}$	tridecano	CH ₃ (CH ₂) ₁₁ CH ₃	235.4	-5.5	0.7546
:	:	:	:	:	:	:
20	$C_{20}H_{42}$	eicosano	CH ₃ (CH ₂) ₁₈ CH ₃	343.0	36.8	0.7886
21	$C_{21}H_{44}$	eneicosano	CH ₃ (CH ₂) ₁₉ CH ₃	356.5	40.5	0.7917
:	:	:	:	:	:	:
30	$C_{30}H_{62}$	triacontano	CH ₃ (CH ₂) ₂₈ CH ₃	449.7	65.8	0.8097

Structure ^a	Condensed structure	Name	Suffix ^b
O.			w to the entire of the contract of the contrac
* —С—он	—COOH or —CO₂H	Carboxylic acid	-oic acid (-carboxylic acid)
О - - - - - -	—so₃H	Sulfonic acid	-sulfonic acid
_c_o_	-coo- or -co ₂ -	Ester	-oate (-carboxylate)
0 -CCI	—сосі	Acid chloride	-oyl chloride
O	—CONH₂	Amide	-amide (-carboxamide)
-c≡N	-CN	Nitrile	-nitrile (-carbonitrile)
о - - -	—сно	Aldehyde	-al (-carbaldehyde)
O -C-			
	-co-	Ketone	-one
—он	—он	Alcohol or Phenol	-ol
—SH	—SH	Thiol	-thiol
-N	-NH ₂	Amine	-amine
н			
-c=c-	-C=C-	Alkene	-ene
-c≡c-	-C≡C-	Alkyne	-yne
-0-	-0-	Ether	ether
H C C H		Benzene	benzene ^c
_С _ С _ Н Н		N CARUMROS	STRUCTURAL

^aFunctional groups with an * must appear at the end of a carbon chain or be attached to a ring.

^bThe suffixes in parentheses are used in names of cyclic compounds.

^cThe benzene ring is a functional group, but its ring is also the carbon skeleton in many aromatic compounds as explained in Section 1.3a.

Nomenclatura (IUPAC)

Il nome IUPAC di un composto organico contiene quattro campi:

Il primo campo include il nome e la posizione dei sostituenti Il secondo campo contiene la radice del nome del composto Il terzo campo indica la presenza (o meno) di legami multipli Il quarto campo definisce il gruppo funzionale principale

4-cloro -2-pentanone

4-cloro

pent

an

2-one

2,3-dimetil-2-esene

2,3-dimetil

es

2-ene

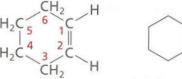
3,3-difenilciclobutanolo

3,3-difenil

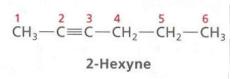
ciclobut

an

olo


Legami multipli

Dopo la radice del nome compare il terzo campo relativo alla presenza di legami multipli nella molecola.


(-ano, -ene, -ino, -diene)

Suffix Meaning			Example	
-ane	No C–C double or triple bonds	Butane	CH ₃ —CH ₂ —CH ₂ —CH ₃	
-ene	One C–C double bond	1-Butene	$^{1}_{CH_{2}} = ^{2}_{CH} - ^{3}_{CH_{2}} - ^{4}_{CH_{3}}$	
-yne	One C–C triple bond	1-Butyne	$H - C \equiv C - CH_2 - CH_3$	
-diene	Two double bonds	1,3-Butadiene	$^{1}_{CH_{2}} = ^{2}_{CH} - ^{3}_{CH} = ^{4}_{CH_{2}}$	

$$^{5}_{CH_{3}}$$
 $-^{4}_{CH_{2}}$ $-^{3}_{CH_{2}}$ $-^{2}_{CH}$ $-^{2}_{CH_{2}}$ $-^{2}_{CH_{2}}$

1 2

Cyclohexene

Cyclooctyne

(terzo campo) Disegnare le formule di struttura e le strutture condensate dei seguenti composti:

3-ESENE

4-OTTINO

1-BUTEN-3-INO

CICLOBUTENE

Gruppo funzionale principale

Secondo la nomenclatura IUPAC il nome del gruppo funzionale a più elevata priorità compare alla fine del nome (quarto campo). Le priorità seguono l'andamento elencato nella tabella dei gruppi funzionali

pent = 5 carbon atoms
an = no multiple bonds (C-C single
bonds only)
oic acid = carboxylic acid functional group,
its C atom defines C1

Acido pent-an-oico

quarto campo

$$CH_3 - C = C - CH_2 - CH_2 - OH_3$$

3-Pentyne-1-ol

pent = 5 carbon atoms
 yne = triple bond, at C3
 ol = OH group (alcohol), at C1

3-Hexanone

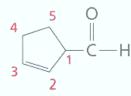
hex = 6 carbon atoms an = no multiple bonds (C-C single bonds only) one = carbonyl group (ketone) at C3

O
$$\parallel$$
 $H-C-CH=CH-CH_3$
1 2 3 4

2-Butenal

but = 4 carbon atoms
en = double bond, at C2
al = aldehyde functional group, its
 C atom defines C1

Cyclohexanecarboxylic acid


cyclohex = a ring of 6 carbon atoms

ane = no multiple bonds (C-C single

bonds only)

carboxylic acid = carboxylic acid functional group

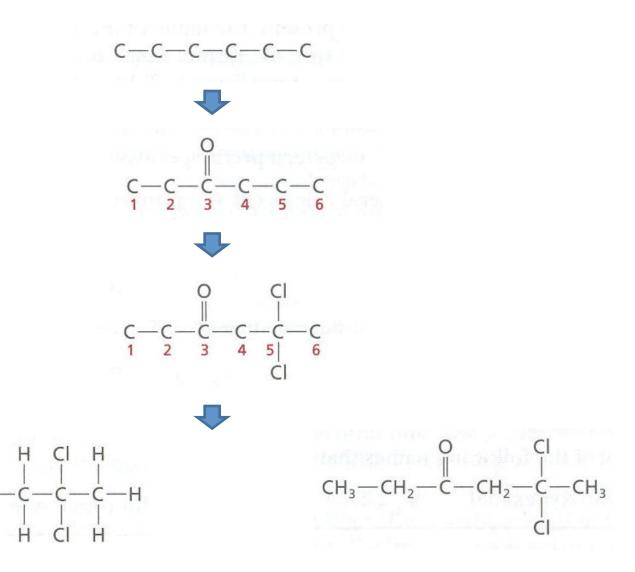
attached to the ring at C1

2-Cyclopentenecarbaldehyde

cyclopent = a ring of 5 carbon atoms ene = double bond, at C2 carbaldehyde = aldehyde functional group attached to the ring at C1

Principali prefissi per i sostituenti

Substituent	Prefix	Substituent	Prefix
—R	Alkyl- (see text)	—F	Fluoro-
—оr с	Alkoxy- (see text) Acetyl-	-c//	Formyl-
CH ₃		—он	Hydroxy-
-NH ₂	Amino-	—1	Iodo-
—Br	Bromo-	-NO ₂	Nitro-
—соон	Carboxy-	—sH	Mercapto-
—CI	Chloro-	=0	Oxo-
—C≡N	Cyano-	-o-	Phenoxy-


I sostituenti: identità e posizione

I sostituenti sono atomi, o gruppi di atomi, diversi dagli atomi di idrogeno che sono legati allo scheletro carbonioso della molecola. Appaiono all'inizio del nome sistematico (primo campo).

La posizione viene indicata con:

- un numero se è legato a un atomo di carbonio (un numero per ogni sostituente)
- il simbolo dell'elemento in corsivo se è legato a un eteroatomo (N, O, S...)

Scrivere la formula di struttura e la struttura condensata del 5,5-dicloro-3-esanone

Scrivere la formula di struttura e la struttura condensata dell'acido 3-idrossibutanoico

Scrivere la formula di struttura e la struttura condensata dell'*N*-cloro-2-propenammide

$$C-C-C \implies C = C - C \\ 3 = 2 \\ 1 \implies C = C - C \\ 3 = 2 \\ 1 \implies C = C - C \\ 1 = N - CI$$

$$H = 0 \\ H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0 \\ H = 0$$

$$H = 0 \\ H = 0 \\ H = 0 \\ H = 0$$

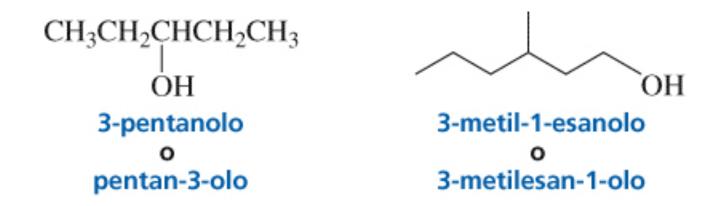
$$H = 0 \\ H =$$

struttura -> nome (alcani)

- 1. identificare la catena di atomi di C più lunga
- 2. numerare la catena in modo che il sostituente abbia in numero più basso possibile
- 3. i numeri si usano per i nomi sistematici (non per i nomi d'uso)
- 4. se alla catena più lunga di C è legato più di un sostituente la catena si numera nella direzione che porta al n. più piccolo possibile
- 5. i sostituenti vanno disposti in ordine alfabetico
- 6. se duo o più sostituenti sono uguali si usano i prefissi di, tri, tetra per indicarne il n. I numeri che indicano la posizione dei sostituenti uguali compaiono uno dopo l'altro
- numeri e parole vanno divisi da trattini; numeri, numeri da virgole

- 8. di, tri, tetra, *terz, sec* vengono ignorati nell'ordine alfabetico; iso e ciclo vengono invece considerati
- 9. quando entrambe le direzioni portano allo stesso numero per il sostituente che ha il n. più basso, si sceglie di numerare la catena nella direzione che assegna il n. più basso all'altro sostituente
- 10. il gruppo citato per primo ha il numero più basso soltanto se si ottengono gli stessi numeri in entrambe le direzioni
- 11. se ci sono due catene idrocarburiche con lo stesso numero di C, va scelta quella con più sostituenti
- 12. è preferibile usare nomi sistematici per i sostituenti (anche se iso, sec e terz vengono accettati)

cicloalcani

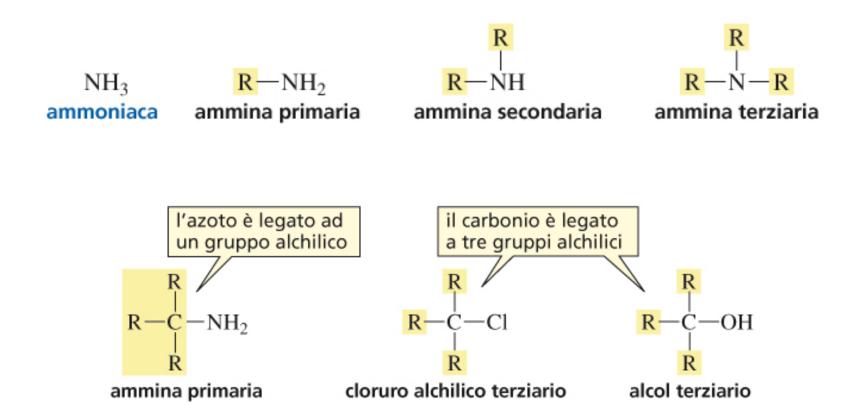

- 1. si considera il ciclo come idrocarburo genitore (radice) a meno che l'eventuale sostituente non abbia un n. di C maggiore
- 2. se nell'anello c'è un solo sostituente esso non viene numerato
- 3. due sostituenti vanno citati in ordine alfabetico e al primo viene assegnato il numero 1, osservando la regola del numero più basso
- 4. se ci sono più di due sostituenti il n. 1 è assegnato a quello che fa in modo che il secondo abbia il n. più basso; poi si procede in senso orario o antiorario in modo da dare al terzo sostituente il n. più basso

eteri

- simmetrici e non simmetrici
- nome d'uso e nome sistematico (alcano con sostituente –OR; "ile"→"ossi" (per IUPAC –OR è un sostituente)

alcoli

- primario, secondario, terziario
- nome d'uso e nome sistematico ("alcol"; "o" dell'alcano →"olo" (-OH è un gruppo funzionale, "olo" è un suffisso)



- l'idocarburo genitore è la catena più lunga di C che contiene il gruppo funzionale
- 2. si numera in modo di dare al suffisso del GF il n. più basso
- 3. se ci sono due –OH si usa "diolo"
- 4. in presenza di sostituenti si assegna al suffisso il n. più basso

- 5. se in entrambe le direzioni il suffisso ha lo stesso n., la catena va numerata in modo da assegnare al sostituente il n. minore
- 6. nei composti ciclici si assume che il suffisso del gruppo funzionale sia in posizione 1
- 7. più sostituenti vanno citati in ordine alfabetico

ammine

• ammine primarie, secondarie, terziarie

CH₃NH₂ metilammina

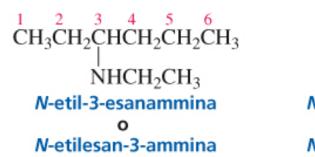
CH₃

CH₃NCH₃

trimetilammina

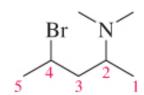
CH₃NHCH₂CH₂CH₃ metilpropilammina

CH₃
CH₃NCH₂CH₂CH₂CH₃
butildimetilammina


CH₃CH₂NHCH₂CH₃ dietilammina

CH₃

CH₃CH₂NCH₂CH₂CH₃


etilmetilpropilammina

4 3 2 1 CH₃CH₂CH₂CH₂NH₂ 1-butanammina o butan-1-ammina

CH₃CHCH₂CH₂NHCH₃

3-cloro-N-metil-1-butanammina

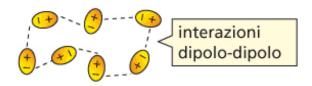
4-bromo-N,N-dimetil-2-pentanammina

N-etil-5-metil-3-esanammina

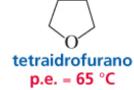
2-etil-N-propilcicloesanammina

Tabella 2.3	Riassunto della nomenclatura	
	Nome sistematico	Nome d'uso
Alogenuro alchilico	alcano sostituito CH ₃ Br bromometano CH ₃ CH ₂ Cl cloroeano	alogenuro, seguito dal gruppo alchilico ad esso legato CH ₃ Br bromuro di metile CH ₃ CH ₂ Cl cloruro di etile
Etere	alcano sostituito CH ₃ OCH ₃ metossimetano CH ₃ CH ₂ OCH ₃ metossietano	gruppi alchilici legati all'ossigeno seguiti da <i>etere</i> CH ₃ OCH ₃ dimetil etere CH ₃ CH ₂ OCH ₃ etil metil etere
Alcol	il suffisso del gruppo funzionale è <i>olo</i> CH ₃ OH metanolo CH ₃ CH ₂ OH etanolo	 alcol seguito dal gruppo alchilico a cui è legato l'OH CH₃OH alcol metilico CH₃CH₂OH alcol etilico
Ammina	il suffisso del gruppo funzionale è <i>ammina</i> CH ₃ CH ₂ NH ₂ etanammina CH ₃ CH ₂ CH ₂ NHCH ₃ N-metil- 1-propanammina	gruppi alchilici legati all'azoto seguiti da ammina CH ₃ CH ₂ NH ₂ etilammina CH ₃ CH ₂ CH ₂ NHCH ₃ metilpropilammina

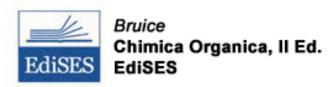
Tabella 2.4 Lunghezza e forza dei legami carbonio-alogeni						
	Interazioni tra gli orbitali	Lunghezza di legame	Forza di (kcal/mol)	legame (kJ/mol)		
H₃C−F	m. C	H H C 1.39 Å H F:	108	451		
H₃C−Cl	CI	H H H	84	350		
H₃C—Br	Br	H H H H 1.93 Å Br:	70	294		
H₃C−I	mC	H H H 2.14 Å	57	239		

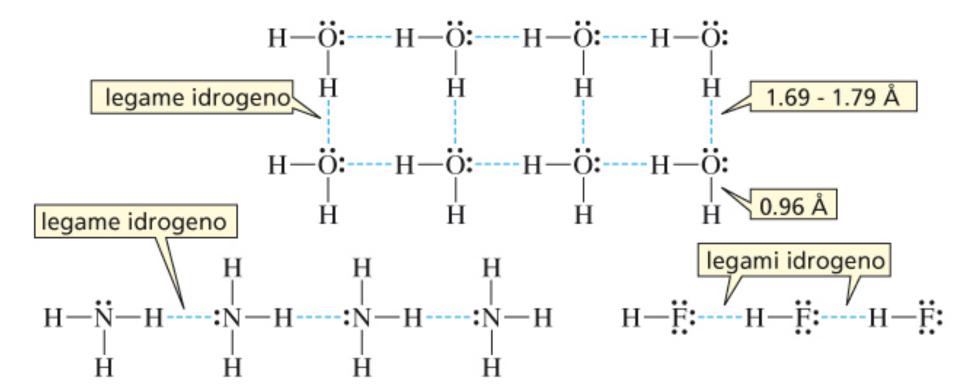


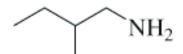
$$CH_3 \\ CH_3CCH_3 \\ CH_3$$

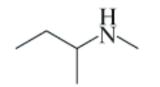

$$2,2-dimetilpropano \\ p.e = 9.5 °C$$

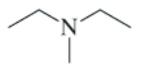
$$R - C - \frac{\delta^+}{Z}$$


$$Z = N, O, F, Cl, o Br$$

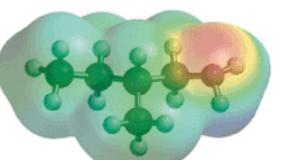


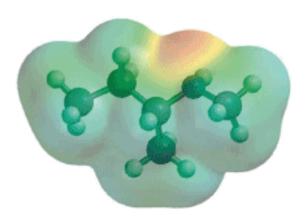


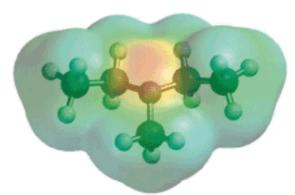

Tabella 2.5 Punti di ebollizione a confronto (°C)					
Alcani	Eteri	Alcoli	Ammine		
CH ₃ CH ₂ CH ₃ −42.1	CH ₃ OCH ₃ -23.7	СН ₃ СН ₂ ОН 78	CH ₃ CH ₂ NH ₂ 16.6		
CH ₃ CH ₂ CH ₂ CH ₃	CH ₃ OCH ₂ CH ₃	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ NH ₂		
-0.5	10.8	97.4	47.8		



ammina primaria p.e. = 97 °C




ammina secondaria


p.e. = 84 °C

ammina terziaria p.e.= 65 °C

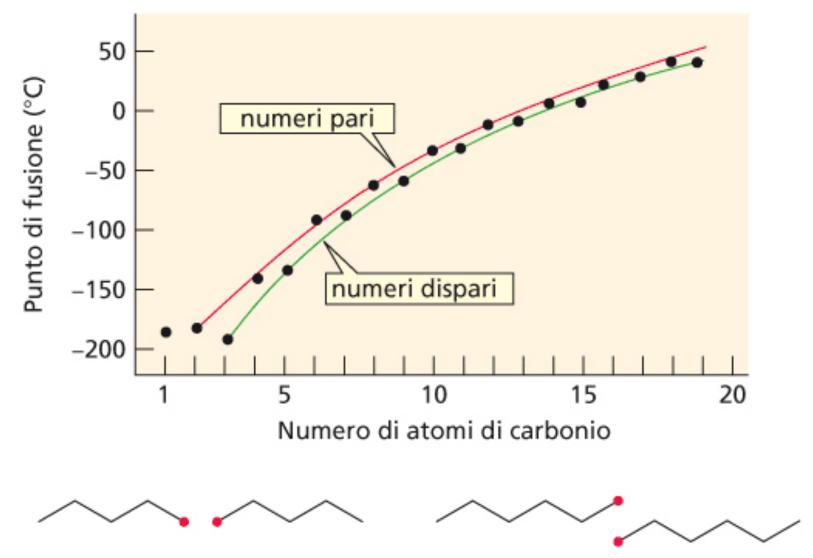


Tabella 2.6 Confronto fra i punti di ebollizione di alcani e alogenuri alchilici (°C)					
_	- Y Н	F	Cl	Br	I
CH ₃ —Y	-161.7	-78.4	-24.2	3.6	42.4
CH ₃ CH ₂ —Y	-88.6	-37.7	12.3	38.4	72.3
CH ₃ CH ₂ CH ₂ — Y	-42.1	-2.5	46.6	71.0	102.5
CH ₃ CH ₂ CH ₂ CH ₂ —Y	-0.5	32.5	78.4	101.6	130.5
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -Y	36.1	62.8	107.8	129.6	157.0



Numero dispari di atomi di carbonio Numero pari di atomi di carbonio

Tabella 2.7	Solubilità degli eteri in acqua	
2 C	CH ₃ OCH ₃	solubile
3 C	CH ₃ OCH ₂ CH ₃	solubile
4 C	CH ₃ CH ₂ OCH ₂ CH ₃	scarsamente solubile (10 g/100 g H ₂ O)
5 C	CH ₃ CH ₂ OCH ₂ CH ₂ CH ₃	pochissimo solubile (1.0 g/100 g H ₂ O)
6 C	CH ₃ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	insolubile (0.25 g/100 g H ₂ O)

Tabella 2.8 Solubilità degli alogenuri alchilici in acqua					
CH ₃ F	CH ₃ Cl	$\mathrm{CH_{3}Br}$	CH₃I		
molto solubile	solubile	scarsamente solubile	scarsamente solubile		
CH ₃ CH ₂ F	CH ₃ CH ₂ Cl	CH ₃ CH ₂ Br	CH ₃ CH ₂ I		
solubile	scarsamente solubile	scarsamente solubile	scarsamente solubile		
CH ₃ CH ₂ CH ₂ F	CH ₃ CH ₂ CH ₂ Cl	CH ₃ CH ₂ CH ₂ Br	CH ₃ CH ₂ CH ₂ I		
scarsamernte solubile	scarsamente solubile	scarsamente solubile	scarsamente solubile		
CH ₃ CH ₂ CH ₂ CH ₂ F	CH ₃ CH ₂ CH ₂ CH ₂ Cl	CH ₃ CH ₂ CH ₂ CH ₂ Br	CH ₃ CH ₂ CH ₂ CH ₂ I		
insolubile	insolubile	insolubile	insolubile		

