Numeri complessi

(Rielaborazione di note di M. Candilera)

Alessandra Bertapelle

a.a. 2023-2024

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

- 1 Introduzione
- 2 Sistemi numerici
 - Numeri naturali
 - Numeri interi
 - Numeri razionali
 - Numeri reali
- Numeri Complessi
 - piano di Gauss
 - Trasformazioni di Möbius (cenni)

Il apparut que, entre deux vérités du domaine réel, le chemin le plus-facile et le plus court passe bien souvent par le domaine complexe.

(Paul Painlevé, Analyse des travaux scientifiques 1900)

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

Introduzione

- I numeri complessi hanno fatto le prime comparse nei lavori dei matematici rinascimentali, come *radici immaginarie* di equazioni algebriche.
- L'introduzione e l'uso sistematico dei numeri complessi viene messo in relazione con la dimostrazione di Gauss del *Teorema fondamentale dell'Algebra* (1799) e la loro rappresentazione geometrica (piano di Argand-Gauss).
- A partire dal XIX secolo, i numeri complessi compaiono sistematicamente nelle applicazioni della Matematica alla Fisica e diventano uno strumento per la risoluzione di problemi matematici ed un ambiente più naturale dei numeri reali per lo studio di problemi geometrici (Hilbert's Nullstellensatz).

Numeri Naturali

Consideriamo come noti i numeri naturali $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ e passiamo in rassegna le loro proprietà.

Definizione (...o quasi): somma

Il numero naturale m + n è l'n-esimo successore di m, ovvero $m + n = (((m + 1) + 1) + \cdots) + 1$ (*n* addendi uguali ad 1).

Definizione (...o quasi): prodotto

Il numero naturale mn si ottiene iterando n volte la somma di mcon se stesso; ovvero $mn = (((m+m)+m)+\cdots)+m$ (n addendi uguali ad m).

Alessandra Bertapelle

Sistemi numerici

Le operazioni di somma e prodotto sono due funzioni

$$+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \qquad \cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

che godono delle seguenti proprietà; per ogni x, y, z in \mathbb{N} , si ha

somma

- (associativa) (x + y) + z = x + (y + z);
- (commutativa) x + y = y + x;
- (esistenza dell'elemento neutro) x + 0 = x = 0 + x.

prodotto

- (associativa) (xy)z = x(yz);
- (commutativa) xy = yx;
- (esistenza dell'elemento neutro) x1 = x = 1x.

(x + y)z = xz + yzInoltre (distributiva)

Numeri Interi

Diamo per noti i numeri interi $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ con le operazioni $+ e \cdot .$ Per ogni x, y, z in \mathbb{Z} , valgono

somma

- (associativa) (x + y) + z = x + (y + z);
- (commutativa) x + y = y + x;
- (esistenza dell'elemento neutro) x + 0 = x = 0 + x.
- (esistenza dell'opposto) dato x, esiste -x tale che x + (-x) = 0 = (-x) + x.

prodotto

- (associativa) (xy)z = x(yz);
- (commutativa) xy = yx;
- (esistenza dell'elemento neutro) x1 = x = 1x.

Inoltre

(distributiva)
$$(x+y)z = xz + yz$$

Alessandra Bertapelle

Numeri compless

Outline Introduzione Sistemi numerici Numeri Complessi Numeri naturali Numeri interi Numeri razionali Numeri razli

Numeri Razionali

Diamo per noto l'insieme dei numeri razionali Q.

Un suo elemento si rappresenta con una frazione $\frac{a}{b}$ (con a, b in \mathbb{Z} e $b \neq 0$) e due frazioni $\frac{a}{b}$ e $\frac{a'}{b'}$ rappresentano lo stesso numero razionale se ab' = a'b in \mathbb{Z} .

Il numero intero n si identifica con la frazione $\frac{n}{1}$ e in questo modo $\mathbb{Z} \subset \mathbb{Q}$.

Le operazioni di somma e prodotto in $\mathbb Q$ sono definite da

$$\frac{a}{b} + \frac{c}{d} \stackrel{def}{=} \frac{ad + bc}{bd}, \qquad \frac{a}{b} \frac{c}{d} \stackrel{def}{=} \frac{ac}{bd},$$

e non dipendono dalla scelta dei rappresentanti.

Le operazioni di somma e prodotto godono delle seguenti proprietà; per ogni x, y, z in \mathbb{Q} , si ha

somma

- (associativa) (x + y) + z = x + (y + z);
- (commutativa) x + y = y + x;
- (esistenza dell'elemento neutro) x + 0 = x = 0 + x.
- (esistenza dell'opposto) dato x, esiste -x tale che x + (-x) = 0 = (-x) + x.

prodotto

- (associativa) (xy)z = x(yz);
- (commutativa) xy = yx;
- (esistenza dell'elemento neutro) x1 = x = 1x.
- (esistenza dell'inverso) dato $x \neq 0$, esiste x^{-1} tale che $x x^{-1} = 1 = x^{-1}x$.

(distributiva)
$$(x + y)z = xz + yz$$
.

Un insieme dotato di due operazioni con le proprietà scritte sopra si dice un *campo* [o *corpo commutativo*].

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi Numeri naturali Numeri interi Numeri razional Numeri reali

Numeri Reali

È noto che il rapporto tra lunghezze non fornisce sempre un numero razionale.

Ad esempio, il rapporto tra la lunghezza della diagonale e quella del lato di un quadrato vale $\sqrt{2}$.

O ancora, il rapporto tra la lunghezza di una circonferenza e quella di un suo raggio vale 2π .

Per questo viene introdotto il campo $\mathbb R$ dei *numeri reali*. Lo diamo per noto in quanto verrà studiato in Analisi.

Nei numeri reali possiamo trovare le radici *n*-esime di tutti i numeri positivi, ma non possiamo trovare soluzioni a tutte le equazioni algebriche.

Ad esempio, non ci può essere soluzione all'equazione $X^2+1=0$. Se ci fosse un tale numero, -1 sarebbe un quadrato, ma in $\mathbb R$ tutti i quadrati sono positivi o 0.

Mostreremo ora dove sia possibile trovare radici a tutti i polinomi a coefficienti reali costruendo il campo dei numeri complessi a partire da \mathbb{R} .

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

piano di Gauss

Numeri Complessi

numeri complessi

Il campo $\mathbb C$ dei *numeri complessi* è l'insieme $\mathbb R \times \mathbb R$ con le operazioni di somma e prodotto definite da

$$(a,b)+(c,d) = (a+c,b+d)$$
 e $(a,b)(c,d) = (ac-bd,ad+bc)$

qualunque siano (a, b) e (c, d) in $\mathbb{R} \times \mathbb{R}$.

La somma e il prodotto in $\mathbb C$ godono delle proprietà associativa, commutativa e distributiva.

Esiste un elemento neutro per la somma, $0_{\mathbb{C}}=(0,0)$

Esiste un elemento neutro rispetto al prodotto, $1_{\mathbb{C}} = (1,0)$.

Dato $(a, b) \in \mathbb{C}$, il suo opposto è -(a, b) = (-a, -b).

Se $(a, b) \neq (0, 0)$, l'inverso è $(a, b)^{-1} = (\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2})$.

Identifichiamo \mathbb{R} con il sottoinsieme (sottocampo) di \mathbb{C} formato dalle coppie (x,0), al variare di $x \in \mathbb{R}$ e scriveremo x in luogo di (x,0).

Sia $i=(0,1)\in\mathbb{C}$ e osserviamo che $i^2=(-1,0)=-1$. Ogni elemento (a,b) di $\mathbb C$ si scrive come

$$(a,b) = (a,0) + (0,b) = a + bi$$
 (rappresentazione algebrica).

- Il numero complesso i è detto l'unità immaginaria.
- I numeri reali a e b sono detti, rispettivamente, la parte reale e la parte immaginaria del numero complesso z = a + bi. In simboli, $a = \Re(z)$ e $b = \Im(z)$.

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

piano di Gauss Trasformazioni di Möbius (cenni)

Vi è una corrispondenza biunivoca $\bar{z} = a + bi$ il suo *coniugato* $\bar{z} = a + (-b)i = a - bi$.

Per ogni coppia di numeri complessi, z e w, valgono

proprietà del coniugio

- $\bullet \ \overline{\overline{z}} = z;$
- $\bullet \ \overline{z+w}=\overline{z}+\overline{w};$
- $\overline{zw} = \overline{z} \overline{w}$;
- $\bar{z} = z$ se, e solo se, $z \in \mathbb{R}$;
- $\Re z = \frac{z + \bar{z}}{2};$
- $\Im z = \frac{z \bar{z}}{2i}.$

modulo di un numero complesso

Il modulo (o valore assoluto) di un numero complesso, z = a + bi, è il numero reale (non negativo)

$$|z| = \sqrt{\bar{z}z} = \sqrt{(a-bi)(a+bi)} = \sqrt{a^2 + b^2}.$$

Il valore assoluto di $\mathbb C$ coincide col valore assoluto reale sul sottocampo \mathbb{R} . Per ogni $z \in \mathbb{C}$, $|\Re z| \le |z|$ e $|\Im z| \le |z|$.

proprietà del modulo

- $|z| = |\bar{z}|$ per ogni $z \in \mathbb{C}$;
- $|z| \ge 0$ per ogni $z \in \mathbb{C}$; e |z| = 0 se, e solo se, z = 0;
- $|z + w| \le |z| + |w|$ per ogni coppia $z, w \in \mathbb{C}$;
- |zw| = |z| |w| per ogni coppia $z, w \in \mathbb{C}$;
- se $z \neq 0$ allora $z^{-1} = \frac{\overline{z}}{|z|^2}$ e $\left| \frac{z}{|z|} \right| = 1$.

Alessandra Bertapelle Numeri complessi

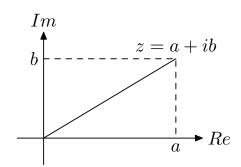
Numeri Complessi

Piano di Argand-Gauss

Gli elementi di $\mathbb C$ "sono" i punti del piano cartesiano $\mathbb{R} \times \mathbb{R}$. Al numero complesso z = a + bi si associa il punto di coordinate (a,b).

L'asse orizzontale, è l'asse reale.

L'asse verticale, è l'asse immaginario.



Essendo gli assi ortogonali, |a+ib| è la distanza del punto (a,b)dall'origine nel piano cartesiano.

Dati due numeri complessi, z e w, il modulo |z - w| è la distanza tra i punti corrispondenti a z e w.

Sia r un numero reale positivo. Nel piano di Gauss l'insieme $\{z \in \mathbb{C} \mid |z-z_0| = r \}$ rappresenta i punti sulla circonferenza di centro z_0 e raggio r.

Sia r un numero reale positivo. Nel piano di Gauss l'insieme $\{z \in \mathbb{C} \mid |z-z_0| < r\}$ rappresenta i punti interni alla circonferenza di centro z_0 e raggio r.

I punti della circonferenza di equazione $x^2+y^2=1$ (centro origine e raggio 1), corrispondono ai numeri complessi $\cos \vartheta + i \sin \vartheta$, con $\vartheta \in [0, 2\pi)$.

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

piano di Gauss
Trasformazioni di Möbius (cenni

Sia $z \neq 0$ in \mathbb{C} e consideriamo

$$z' = \frac{z}{|z|} = c + di;$$
 si ha $|z'| = \sqrt{c^2 + d^2} = 1.$

Esiste un numero reale ϑ (unico se lo richiediamo in $[0,2\pi)$) tale che $z'=\cos\vartheta+i\sin\vartheta$ e si ha z=|z|z' da cui

$$z = |z|(\cos \vartheta + i \sin \vartheta) = |z| \text{cis}\vartheta$$
 (rappresentazione trigonometrica).

 ϑ è l'angolo formato dalla semiretta per z uscente dall'origine e la semiretta positiva dell'asse orizzontale.

 ϑ è detto argomento del numero complesso $z \neq 0$ (ed è determinato da z a meno di multipli interi di 2π). Si indica con $\operatorname{Arg}(z)$.

Prodotto

Se $z_1 = |z_1|(\cos \vartheta_1 + i \sin \vartheta_1)$ e $z_2 = |z_2|(\cos \vartheta_2 + i \sin \vartheta_2)$, sono numeri complessi non nulli, il loro prodotto è

$$z_1 z_2 = |z_1|(\cos \vartheta_1 + i \sin \vartheta_1)|z_2|(\cos \vartheta_2 + i \sin \vartheta_2) = |z_1 z_2|[\cos(\vartheta_1 + \vartheta_2) + i \sin(\vartheta_1 + \vartheta_2)],$$

Pertanto

- $|z_1z_2| = |z_1||z_2|;$
- $Arg(z_1z_2) = Arg(z_1) + Arg(z_2).$

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

piano di Gauss
Trasformazioni di Möbius (cenni

Potenze

Se
$$z_1 = |z_1|(\cos \vartheta_1 + i \sin \vartheta_1)$$
 allora

$$z_1^2 = |z_1|^2 (\cos 2\theta_1 + i \sin 2\theta_1)$$

$$z_1^3 = |z_1|^3 (\cos 3\theta_1 + i \sin 3\theta_1)$$
...
$$z_1^n = |z_1|^n (\cos n\theta_1 + i \sin n\theta_1)$$

Pertanto

- $|z_1^n| = |z_1|^n$;
- $\operatorname{Arg}(z_1^n) = n\operatorname{Arg}(z_1)$.

Di conseguenza, sappiamo calcolare le radici.

Per $z_0 \neq 0$ e $n \geq 1$, si ha

$$z^n = z_0$$

se, e solo se, $|z|^n = |z_0|$ e $n\vartheta = \vartheta_0 + 2k\pi$ al variare di $k \in \mathbb{Z}$, ove $\vartheta = \operatorname{Arg} z$ e $\vartheta_0 = \operatorname{Arg} z_0$.

formula di de Moivre

$$z^n = z_0 \iff \begin{cases} |z| = \sqrt[n]{|z_0|} \\ \vartheta = \frac{\vartheta_0}{n} + \frac{2k\pi}{n} \quad k = 0, \dots, n-1 \end{cases}$$

Ci sono n radici n-esime distinte per ogni numero complesso diverso da 0, che formano i vertici di un n-gono regolare centrato nell'origine.

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

piano di Gauss Trasformazioni di Möbius (cenni)

esponenziale complesso

Sia z = x + iy, con x e y reali, e poniamo

$$e^z = e^{x+iy} = e^x(\cos y + i \sin y).$$

Al variare di z in \mathbb{C} , $e^z \neq 0$, e si ha $e^{z+w} = e^z e^w$.

Per ogni numero complesso $z_0 = |z_0|(\cos \vartheta_0 + i \sin \vartheta_0) \neq 0$, si ha

$$z_0 = |z_0|e^{i\vartheta_0} = \rho e^{i\vartheta_0}$$
 (rappresentazione esponenziale)

ove ϑ_0 è l'argomento di z_0 e $\rho = |z_0|$.

Identità di Eulero

$$e^{i\pi} + 1 = 0$$

I numeri complessi sono un campo *algebricamente chiuso*. Vale il cosiddetto

Teorema fondamentale dell'Algebra

Sia P(X) un polinomio di grado positivo in $\mathbb{C}[X]$. Allora esiste un numero complesso z_0 tale che $P(z_0) = 0$.

Ogni polinomio a coefficienti in \mathbb{R} si fattorizza come prodotto di polinomi lineari $X-\alpha$ con $\alpha\in\mathbb{R}$ e polinomi di grado due $(X-\beta)(X-\bar{\beta})$ con $\beta\in\mathbb{C}$.

Alessandra Bertapelle

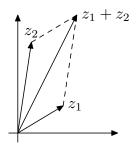
Numeri complessi

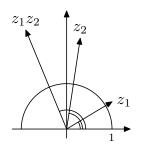
Outline Introduzione Sistemi numerici Numeri Complessi

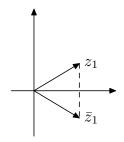
piano di Gauss
Trasformazioni di Möbius (cenni

Interpretazione geometrica

Le operazioni in $\mathbb C$ hanno una rappresentazione geometrica nel piano di Gauss.







La *somma* per un numero z_2 è la traslazione corrispondente a quel vettore.

Il *prodotto* per un numero $z_2 = \rho e^{i\alpha} \neq 0$ è una dilatazione di rapporto ρ seguita da una rotazione di angolo $\alpha = \operatorname{Arg} z_2$. Il *coniugato* di un numero complesso, z_1 , è il simmetrico di z_1 rispetto all'asse orizzontale.

Rette e cerchi nel piano di Gauss

Luogo degli zeri di funzioni nelle **variabili hermitiane** $z \in \overline{z}$.

Proposizione

Al variare di A e C in \mathbb{R} e di α in \mathbb{C} , l'insieme $S = \{ z \in \mathbb{C} \mid Az\overline{z} + \alpha\overline{z} + \overline{\alpha}z + C = 0 \}$ descrive:

- tutto il piano se $A = C = \alpha = 0$;
- l'insieme vuoto se $A = \alpha = 0$ e $C \neq 0$;
- una **retta** se A = 0 e $\alpha \neq 0$;
- l'insieme vuoto se $A \neq 0$ e $|\alpha|^2 AC < 0$;
- un punto se $A \neq 0$ e $|\alpha|^2 = AC$;
- una **circonferenza** di centro $-\alpha/A$ e raggio $\sqrt{|\alpha|^2 AC}/|A|$ se $A \neq 0$ e $|\alpha|^2 AC > 0$.

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

piano di Gauss Trasformazioni di Möbius (cenni

Rette

La retta di equazione cartesiana ax + by + c = 0 con $a, b, c \in \mathbb{R}$ e $(a, b) \neq (0, 0)$ ha equazione hermitiana

$$\bar{\alpha}z + \alpha\bar{z} + 2c = 0$$
, con $\alpha = a + ib$.

- \Leftarrow) scrivere $\alpha = a + ib$, z = x + iy e sviluppare i calcoli.
- \Rightarrow) moltiplicare per 2 l'equazione cartesiana della retta, sostituire $2a = \Re \alpha = \alpha + \bar{\alpha}, \ 2b = \Im \alpha = -i(\alpha \bar{\alpha})$ e raccogliere α e $\bar{\alpha}$.

Punti allineati con 0

Due punti $z=x+iy=|z|e^{i\alpha}, w=u+iv=|w|e^{i\beta}\in\mathbb{C}$ sono allineati con l'origine 0 se e solo se

$$e^{i\alpha} = \pm e^{i\beta} \Leftrightarrow \frac{z}{|z|} = \pm \frac{w}{|w|} \Leftrightarrow \frac{z^2}{|z|^2} = \frac{w^2}{|w|^2} \Leftrightarrow \frac{z^2}{z\overline{z}} = \frac{w^2}{w\overline{w}}$$

se e solo se

$$z\bar{w}=\bar{z}w$$

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

piano di Gauss Trasformazioni di Möbius (cenni)

3 punti allineati

Tre punti $z_0=x_0+iy_0, z_1=x_1+iy_1, z_2=x_2+iy_2\in\mathbb{C}$ sono allineati se e solo se $0,\ z_1-z_0,\ z_2-z_0$ sono allineati, se e solo se

$$(z_1-z_0)(\bar{z}_2-\bar{z}_0)=(\bar{z}_1-\bar{z}_0)(z_2-z_0),$$

La retta per due punti z_0, z_1 ha eq. hermitiana:

$$(\bar{z}_1 - \bar{z}_0)z - (z_1 - z_0)\bar{z} + z_1\bar{z}_0 - \bar{z}_1z_0 = 0.$$

ossia $\alpha = (z_1 - z_0)i$ e $C = 2\Im(z_1\bar{z}_0)$.

Caso particolare: retta per punti di \mathbb{S}^1

Se $|z_0| = 1 = |z_1|$ osservo che

•
$$z_1 - z_0 = -z_1 z_0 (\bar{z}_1 - \bar{z}_0);$$

•
$$(z_1+z_0)(\bar{z}_1-\bar{z}_0)=z_0\bar{z}_1-z_1\bar{z}_0.$$

L'equazione della retta

$$(\bar{z}_1 - \bar{z}_0)z - (z_1 - z_0)\bar{z} + z_1\bar{z}_0 - \bar{z}_1z_0 = 0.$$

diventa allora

$$z + z_0 z_1 \bar{z} = z_0 + z_1$$
.

Per ricordarla:

$$z + PQ\bar{z} = P + Q$$
.

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

Trasformazioni di Möbius (cenni

Circonferenze

La circonferenza di equazione cartesiana

$$(x-a)^2 + (y-b)^2 = r^2$$

ha equazione hermitiana

$$z\bar{z} + \bar{\alpha}z + \alpha\bar{z} + C = 0,$$

con
$$\alpha = -(a + ib)$$
 e $C = |\alpha|^2 - r^2$.

Dim:
$$(x-a)^2 + (y-b)^2 = |z+\alpha|^2 = (z+\alpha)(\bar{z}+\bar{\alpha}) = z\bar{z} + \bar{\alpha}z + \alpha\bar{z} + |\alpha|^2$$

Viceversa: $z\bar{z} + \bar{\alpha}z + \alpha\bar{z} + C = 0$ è l'equazione

- di una circonferenza se $|\alpha|^2 C > 0$,
- di un punto se $|\alpha|^2 C = 0$,
- non ha soluzioni se $|\alpha|^2 C < 0$.

Angoli

Dati $w_1 = \rho_1 e^{i\theta_1}, w_2 = \rho_2 e^{i\theta_2}$ non nulli l'angolo $w_1 \hat{0} w_2$ è

$$\theta_2 - \theta_1 = \operatorname{Arg} \frac{w_2}{w_1} = \operatorname{Arg} (w_2 \bar{w}_1), \qquad e^{i(\theta_2 - \theta_1)} = \frac{w_2}{|w_2|} \frac{\bar{w}_1}{|\bar{w}_1|}.$$

Dati $z_0,z_1,z_2\in\mathbb{C}$ l'angolo $z_1\hat{z}_0z_2$ è l'angolo $(z_1-z_0)\hat{0}(z_2-z_0)$

$$\alpha = \operatorname{Arg} \frac{z_2 - z_0}{z_1 - z_0}$$

Dunque

$$e^{i\alpha} = rac{z_2 - z_0}{|z_2 - z_0|} rac{ar{z}_1 - ar{z}_0}{|z_1 - z_0|}, \qquad e^{2i\alpha} = rac{(z_2 - z_0)(ar{z}_1 - ar{z}_0)}{(ar{z}_2 - ar{z}_0)(z_1 - z_0)}.$$

Alessandra Bertapelle

Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

piano di Gauss

Esercizio: equazione di rette ortogonali

Siano $z_0, z_1 \in \mathbb{C}$ distinti. L'equazione della retta per z_0 ortogonale alla retta per z_0 e z_1 ha equazione hermitiana

$$z(\bar{z}_1-\bar{z}_0)+\bar{z}(z_1-z_0)-z_0(\bar{z}_1-\bar{z}_0)-\bar{z}_0(z_1-z_0)=0.$$

Infatti deve essere $\alpha=\pi/2$ oppure $3\pi/2$ e dunque

$$-1 = e^{2i\alpha} = \frac{(z-z_0)(\bar{z}_1 - \bar{z}_0)}{(\bar{z}-\bar{z}_0)(z_1 - z_0)} \Leftrightarrow (z-z_0)(\bar{z}_1 - \bar{z}_0) = -(\bar{z}-\bar{z}_0)(z_1 - z_0).$$

Se $|z_0|=1=|z_1|$ posso riscriverla come $z-z_0z_1\bar{z}=z_0-z_1$.

$$z - PQ\bar{z} = P - Q.$$

Esercizio: equazione dell' asse

Siano $z_0, z_1 \in \mathbb{C}$. Allora l'asse del segmento di estremi z_0, z_1 è dato da $|z - z_0| = |z - z_1|$, da cui l'equazione dell'asse:

$$z(\bar{z}_1 - \bar{z}_0) + \bar{z}(z_1 - z_0) + |z_0|^2 - |z_1|^2 = 0.$$

Se $|z_0| = 1 = |z_1|$ posso riscriverla nella forma $z = z_0 z_1 \bar{z}$, o per ricordarla:

$$z = PQ\bar{z}$$

Alessandra Bertapelle

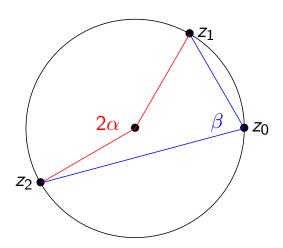
Numeri complessi

Outline Introduzione Sistemi numerici Numeri Complessi

piano di Gauss

Esercizio: Angoli al centro e alla circonferenza

Mostriamo che $\alpha = \beta$.



Posso assumere circonferenza unitaria centrata in 0 e $z_0=1$. Sia $z_2=z_1e^{2\alpha i}$. Allora

$$e^{2\beta i} = rac{(z_2 - 1)(ar{z}_1 - 1)}{(ar{z}_2 - 1)(z_1 - 1)}$$

$$= rac{z_2}{z_1} rac{(z_2 - 1)(1 - z_1)}{(1 - z_2)(z_1 - 1)}$$

$$= rac{z_2}{z_1}$$

$$z_2 = z_1 e^{2\beta i} \Rightarrow \alpha = \beta.$$

Trasformazioni di Möbius e inversione circolare

Vi sono due tipi di trasformazioni del piano di Gauss che riflettono operazioni su \mathbb{C} .

1) Trasformazioni di Möbius:

$$z\mapsto rac{az+b}{cz+d}$$
 con $a,b,c,d\in\mathbb{C},\ ad-bc
eq 0.$

II) Inversione circolare (o rispetto al cerchio unitario):

$$z\mapsto rac{1}{ar{z}}$$

Alessandra Bertapelle

Numeri compless