Wireless Networks for Mobile Applications

Prof. Claudio Palazzi
cpalazzi@math.unipd.it

Università degli Studi di Padova
IEEE 802.11p Introduction

- Designed to provide connectivity to vehicles
 - Since 4G technology available not so crucial anymore
 - Still useful for safety/public applications

- Parts are taken from 802.11a and 802.11p

- Improves on the range and speed of the dedicated 5.9GHz licensed band (same in EU and USA)
 - Up to 1000m of transmission range
 - Up to 26Mbps of data rate
 - Capable of transmitting at 6Mbps at 300m of distance even if the node travels at 200Km/h

- Related previous terms/technology: Wave or DSRC
Safe Driving: Problem Statement

• Alert Messages has to be delivered very quickly to all cars following the AV

• Problems arise from multiple transmissions in case of accidents
 – multiple Abnormal Vehicles (AVs)
 – chain reactions

• Various proposals to reduce multiple (and redundant) transmissions.
PAPER:
A Vehicle-to-Vehicle Communication Protocol for Cooperative Collision Warning

X. Yang, J. Liu, F. Zhao, N. H. Vaidya
Introduction

• Vehicle safety applications require fast delivery of alert messages

• Problems arise from multiple transmissions in case of accidents
 • multiple Abnormal Vehicles (AVs)
 • chain reactions

• Propose Vehicular Collision Warning Communication (VCWC) protocol to reduce multiple (and redundant) transmissions.
Application Challenges

• Application challenges:
 • Stringent delay requirements immediately after the emergency
 • Support of multiple co-existing AVs over a longer period
 • transmissions from co-existing Avs interfere with each other
 • chain effect and persistent transmissions generate co-existence of AVs.
 • Differentiation of emergency events and elimination of redundant EWMs
 • busy tone on other frequencies to stop non-EWM transmissions
 • no need to further transmit the EWM after some time if following vehicles received it
Emergency Messages

- Inside the Emergency Warning Messages (EWMs):
 - geographical location
 - speed
 - acceleration
 - moving direction

- Messages sent in broadcast
Other Assumptions

- each vehicle is able to obtain its own absolute and relative position
- each vehicle is equipped with at least one wireless transceiver
- DSRC and 802.11p (they used 802.11b for simulations) is used:
 - 6 Mbps
 - 300 m of range
 - transmissions possible even at 200Km/h
Delays

- Rate decreasing algorithm for EWMs
Vehicular Networks: System Model

- High mobility of nodes

- Variable transmission range
 - Erroneously ignored in most papers (simulations)

- A car cannot be sure to be the farthest car receiving that broadcast message

- Who has to forward the alert message?
Simple Example

• Optimal solution: A, C, F, G, and F broadcast the alert message (one message and 4 hops)
MCDS Approach

• Exploiting the notion of **Minimum Connected Dominating Set**\(^*\) (MCDS)
 – Only node in the MCDS has to broadcast the message
 – **Optimal but non feasible** solution
 – Needs complete and updated knowledge of the network topology
 – A practical implementation with \(n\) nodes needs \(O(n \log n)\) control messages.

\(^*\) the minimum cardinality set of connected nodes, such that each other node in the network is connected to a node of the MCDS set.
Redundancy Avoidance Approach

• More practical approaches:
 – Backoff mechanism to reduce frequency of message transmission in case of collisions due to congestion
 – If the message has already been re-broadcast by a following vehicle do not forward it (it would be redundant)

• None of these two schemes considers the number of hops that a message traverse
Jamming Signal Approach

- **Urban Multi-hop Broadcasting protocol** utilizes jamming signals (or busy tone) to determine the next forwarder
 - Vehicles receiving an alert message emit a jamming signal for a time that is proportional to the distance from the sender
 - The last vehicle stopping the jamming signal knows it is the last one and forward the alert message
 - Jamming signal phase delays the transmission of the message: not suitable for alert messages
Contestation Window Approach

• Vehicles could set their respective contention windows inversely proportional to the distance from the sender.
 – no control traffic generated
 – yet, unrealistically assumes that there is a unique, constant, and known a priori transmission range for all cars in every moment
Fast Broadcast: Basics

• **Fast Broadcast** solution is designed to have *Alert Messages* covering the area-of-interest in as less time as possible (as few hops as possible)

• Fast Broadcast works in two phases
 – *estimation phase*: vehicles exchange few *hello messages* to collect information in order to *estimate* their own *tx range*.
 – *broadcasting phase*: the tx range estimation is put to good use to reduce the number of hops that an *Alert Message* will experience in its trip to destination.
Fast Broadcast Mechanism: Phase 1

Estimation Phase:

- Continuously run
- Time is divided into rounds
- **ONE** Hello Messages randomly sent every time round
- Hello Messages contain the sender’s position and the maximum frontward distance from which another vehicle has been heard transmitting an Hello Message
Fast Broadcast: Two Kinds of Messages

- In *Hello Messages*: information to estimate tx range
- In *Alert Messages*: sender’s transmission range

1. Through A’s Hello Message, C knows its “hearing distance”
2. Hello Messages also says how far C can hear
3. Alert Message including B’s range estimation
Hello Messages: Variables

CMBR: Current Maximum Backward Range

CMFR: Current Maximum Frontward Range

LMBR: Last Maximum Backward Range

LMFR: Last Maximum Frontward Range

Hello Message: CMFR

Alert Message: MaxRange=CMBR
Messages’ Different Purposes

- Distance from the sender and included CMFR are utilized for:
 - Hello messages received from the front used to compute the CMFR
 - Hello Messages received from the back used to compute the CMBR

HM: “This CMFR value is the maximum distance from which I have been able to hear another car in front of me”

AM: “This CMBR value is the maximum backward distance at which some car would be able to hear me”
Fast Broadcast Mechanism: Phase 2

Broadcast Phase:

- *Alert Messages* are generated by an AV
 - Alert sent in broadcast to warn following vehicles

- The *Alert Message* includes also the estimated tx range for that hop

- A node receiving the *Alert Message* waits a time that is proportional to the node’s position with respect to the estimated maximum tx range
Contention Window Computation

• AV broadcasts an Alert Message containing the Estimated Maximum Transmission Range ($MaxRange = CMBR$) and position.

• Cars forward the Alert Message after a contention window calculated as follows:

$$\left\lceil \left(\frac{MaxRange - Distance}{MaxRange} \times (CWMax - CWMin) \right) + CWMin \right\rceil$$

• If another car that is farther from the source than the considered one already forwarded the Alert Message, then the considered car abort its sending procedure (the message has already propagated).
Example (1/5)

Initial State

<table>
<thead>
<tr>
<th>Cars:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMFR:</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>CMBR:</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Example (1/5)
Example (2/5)

First Hello Message

Transm. range 1000m

HelloMsg: 300

CMFR: 300 300 300 300 300 300 300 700

CMBR: 300 900 800 600 500 300 300 300

max(300, 900, 300) max(300, 600, 300) max(300, 100, 300)

max(300, 800, 300) max(300, 500, 300) max(300, 700, 300)

0m 400m 500m 700m 800m 1300m 1400m 2000m

Cars: A B C D E F G H

Cars:

Cars:

Cars:
Example (3/5)

Second Hello Message

Transm. range = 1000m

HelloMsg: 300

CMFR:
300 300 300 300 300 600 700 700

CMBR:
700 900 800 600 500 300 300 300

max(900, 300, 300)
max(300, 100, 300)
max(300, 700, 300)
max(300, 600, 300)
max(800, 200, 300)

Cars: A B C D E F G H
Example (4/5)

Third Hello Message

Transm. range = 1000m

- **HelloMsg**: 700

<table>
<thead>
<tr>
<th>Cars:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMFR:</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>600</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>CMBR:</td>
<td>700</td>
<td>900</td>
<td>900</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>300</td>
</tr>
</tbody>
</table>

- **max(800, 900, 700)**
- **max(600, 700, 700)**
- **max(500, 600, 700)**
- **max(300, 100, 700)**
- **max(700, 600, 700)**

26
Broadcast Message

Transm. range = 1000m

<table>
<thead>
<tr>
<th></th>
<th>CMFR:</th>
<th></th>
<th>CMBR:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>700</td>
<td>700</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>300</td>
<td>300</td>
<td>700</td>
</tr>
</tbody>
</table>

- **Contention window size**
- **Estimated transmission range**
- **Actual transmission range**
- **Fixed transmission range**

Contestation window size of Smart Broadcast algorithm with fixed transmission range of 300m and effective range of 1000m.

Ideal contention window with an effective range of 1000m.
Simulation Assessment

• Strip-shaped road
• Area-of-interest of 8km.
• 20 simulations for each scenario
 – outcomes averaged
• Different numbers (densities) of cars
 – 500, 700, and 1000
• Within the same simulation, cars have various speeds
 – uniformly distributed in the range 72-144Km/h.
• CWMin and CWMax equal to 32 and 1024 slots
 – as the real IEEE 802.11 protocol
• Two possible cases for the actual transmission range
 – 300m and 1000m.
Compared Schemes

- **Fast Broadcasting**
 - Exploits our tx range estimator
- **Static300**
 - considers 300m as a fixed parameter for the tx range
 - Ideal iff the actual transmission range is indeed 300m
- **Static1000**
 - considers 1000m as a fixed parameter for the tx range
 - Ideal iff the actual transmission range is indeed 1000m
Summarizing Results (1/4): 300m of Actual Transmission Range

Factual Transmission Range = 300m

Number of hops required to propagate the broadcast message.

Static300 considers 300m as a fixed parameter for the transmission range
Static1000 considers 1000m as a fixed parameter for the transmission range
Summarizing Results (2/4):
300m of Actual Transmission Range

![Bar chart showing transmission range and slots waited]

Total number of slots waited to propagate the broadcast message.

Static300 considers 300m as a fixed parameter for the transmission range.

Static1000 considers 1000m as a fixed parameter for the transmission range.
Summarizing Results (3/4): 1000m of Actual Transmission Range

Number of hops required to propagate the broadcast message.

Static300 considers 300m as a fixed parameter for the transmission range. Static1000 considers 1000m as a fixed parameter for the transmission range.
Summarizing Results (4/4): 1000m of Actual Transmission Range

Factual Transmission Range = 1000m

Percentage of Collisions to propagate the broadcast message.

Static300 considers 300m as a fixed parameter for the transmission range

Static1000 considers 1000m as a fixed parameter for the transmission range
Avoiding crash accidents

If speed > 0 then accident at that speed
In Summary…

• Interferences caused by environmental conditions and cars’ mobility modify transmission ranges.
 – Impact on performance of broadcasting algorithms

• Fast Broadcast is a multi-hop broadcast protocol for vehicular networks
 – Estimates the max transmission range with few hello messages
 – minimizes the number of hops to be traversed and message retransmissions, during the broadcast activity
 – reduces the delivery time

Algorithm Classification

- Multi-hop propagation
 - Farthest forwarder definition
 - Two main approaches

- Probabilistic
- Deterministic

- Reliability
- End to end delay
Probabilistic: Fast Broadcast

- Multi-hop **probabilistic** delay-based broadcasting protocol
- Dynamic transmission range estimation
 - No need to know it *a priori*, as often assumed in other protocols
- Estimation Phase:
 - Vehicles exchange small *Hello Messages* (beacons) to estimate their transmission range
 - **1 Hello Message** sent every *BeaconInterval* (e.g., 100ms) within each transmission range
- Broadcast Phase:

<table>
<thead>
<tr>
<th>Waiting random slots within [0…X]</th>
<th>[0…1024]</th>
<th>[0…512]</th>
<th>[0…32]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>
Deterministic: ROFF

- ROFF – RObust Fast Forwarding
- Multi-hop **deterministic** delay-based broadcasting protocol
- Estimation Phase:
 - **Each vehicle** sends a Hello Message every *BeaconInterval* (e.g., 100ms)
 - Neighborhood discovery process

- Broadcast Phase:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Waiting time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Considered Urban Scenarios

For conciseness we only show results for Padua here
Test Configuration

<table>
<thead>
<tr>
<th>Scenario configuration</th>
<th>Simulator configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario name</td>
<td>Padua</td>
</tr>
<tr>
<td>Latitude N [°]</td>
<td>45.4171</td>
</tr>
<tr>
<td>Latitude S [°]</td>
<td>45.3981</td>
</tr>
<tr>
<td>Longitude W [°]</td>
<td>11.8654</td>
</tr>
<tr>
<td>Longitude E [°]</td>
<td>11.8923</td>
</tr>
<tr>
<td>Circumference radius [m]</td>
<td>1000</td>
</tr>
<tr>
<td>Distance between vehicles [m]</td>
<td>5, 15, 25, 35, 45</td>
</tr>
<tr>
<td>Number of vehicles</td>
<td>4975, 2856, 1775, 1318, 1072</td>
</tr>
<tr>
<td>Number of simulations</td>
<td>4500</td>
</tr>
<tr>
<td>Packet payload size</td>
<td>100 byte</td>
</tr>
<tr>
<td>Frequency [GHz]</td>
<td>2.4</td>
</tr>
<tr>
<td>Channel bandwidth [MHz]</td>
<td>22</td>
</tr>
<tr>
<td>Transmission speed [Mbps]</td>
<td>11</td>
</tr>
<tr>
<td>Transmission powers [dBm]</td>
<td>-7.0, 4.6, 13.4</td>
</tr>
<tr>
<td>Transmission ranges [m]</td>
<td>100, 300, 500</td>
</tr>
<tr>
<td>Modulation</td>
<td>DSSS</td>
</tr>
<tr>
<td>Propagation loss model</td>
<td>ns3::TwoRayGround</td>
</tr>
<tr>
<td>Propagation delay model</td>
<td>ns3::ConstantSpeed</td>
</tr>
</tbody>
</table>
End-to-End Delay

ROFF (deterministic) has less end-to-end delay in case of few vehicles
Redundancy

Forwarding Node Number (Fast-Broadcast)

Forwarding Node Number (ROFF)
Padua with Buildings

<table>
<thead>
<tr>
<th>Scenario configuration</th>
<th>Simulator configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario name</td>
<td>Packet payload size</td>
</tr>
<tr>
<td>Padua</td>
<td>100 byte</td>
</tr>
<tr>
<td>Latitude N °</td>
<td>Frequency [GHz]</td>
</tr>
<tr>
<td>45.4171</td>
<td>2.4</td>
</tr>
<tr>
<td>Latitude S °</td>
<td>Channel bandwidth [MHz]</td>
</tr>
<tr>
<td>45.3981</td>
<td>22</td>
</tr>
<tr>
<td>Longitude W °</td>
<td>Transmission speed [Mbps]</td>
</tr>
<tr>
<td>11.8654</td>
<td>11</td>
</tr>
<tr>
<td>Longitude E °</td>
<td>Transmission powers [dBm]</td>
</tr>
<tr>
<td>11.8923</td>
<td>-7.0, 4.6, 13.4</td>
</tr>
<tr>
<td>Circumference radius [m]</td>
<td>Transmission ranges [m]</td>
</tr>
<tr>
<td>1000</td>
<td>100, 300, 500</td>
</tr>
<tr>
<td>Distance between vehicles [m]</td>
<td>Modulation</td>
</tr>
<tr>
<td>25</td>
<td>DSSS</td>
</tr>
<tr>
<td>Number of vehicles</td>
<td>Propagation loss model</td>
</tr>
<tr>
<td>1775</td>
<td>ns3::TwoRayGround</td>
</tr>
<tr>
<td>Number of buildings</td>
<td>Propagation delay model</td>
</tr>
<tr>
<td>6322</td>
<td>ns3::ConstantSpeed</td>
</tr>
<tr>
<td>Number of simulations</td>
<td>Shadowing model</td>
</tr>
<tr>
<td>4500</td>
<td>ns3::ObstacleShadowing</td>
</tr>
</tbody>
</table>
Fast-Broadcast (probabilistic) has better coverage with shorter tx range
Exploiting Junctions: Example

Using vehicles or repeaters at junctions as forwarders improves coverage
Junctions: Model

- **Aim:** exploit vehicles located within junctions to improve coverage
- **Identification of junctions via OSM/SUMO tools**

```xml
<junction id="1101896841" type="right_before_left" x="1261.31" y="2430.73"
inclanes="94925123#0_0 -94925123#1_0" intLanes=":1101896841_0_0 :1101896841_1_0
:1101896841_2_0 :1101896841_3_0 :1101896841_4_0 :1101896841_5_0"
shape="1262.20,2433.25 1263.07,2432.75 1262.80,2431.98 1262.85,2431.66 1263.03,
2431.39 1263.32,2431.17 1263.73,2430.99 1263.11,2429.09 1259.38,2430.19 1259.87,
2432.13 1260.78,2432.09 1261.18,2432.22 1261.56,2432.46 1261.90,2432.81">```

- **20x20m bounding box to extend the polygon**
- **Vehicles within a junction participate in a **second contention****
- **Extension applicable both to Fast-Broadcast and ROFF**
  - SJ-Fast-Broadcast and SJ-ROFF
Junctions: Scenarios

Los Angeles

Padua
# Padua with Junctions

<table>
<thead>
<tr>
<th>Scenario configuration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario name</td>
<td>Padua</td>
</tr>
<tr>
<td>Latitude N [°]</td>
<td>45.4171</td>
</tr>
<tr>
<td>Latitude S [°]</td>
<td>45.3981</td>
</tr>
<tr>
<td>Longitude W [°]</td>
<td>11.8654</td>
</tr>
<tr>
<td>Longitude E [°]</td>
<td>11.8923</td>
</tr>
<tr>
<td>Circumference radius [m]</td>
<td>1000</td>
</tr>
<tr>
<td>Distance between vehicles [m]</td>
<td>25</td>
</tr>
<tr>
<td>Number of vehicles</td>
<td>1775</td>
</tr>
<tr>
<td>Number of buildings</td>
<td>6322</td>
</tr>
<tr>
<td><strong>Number of junctions</strong></td>
<td>3231</td>
</tr>
<tr>
<td>Number of simulations</td>
<td>4500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulator configuration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet payload size</td>
<td>100 byte</td>
</tr>
<tr>
<td>Frequency [GHz]</td>
<td>2.4</td>
</tr>
<tr>
<td>Channel bandwidth [MHz]</td>
<td>22</td>
</tr>
<tr>
<td>Transmission speed [Mbps]</td>
<td>11</td>
</tr>
<tr>
<td>Transmission powers [dBm]</td>
<td>-7.0, 4.6, 13.4</td>
</tr>
<tr>
<td>Transmission ranges [m]</td>
<td>100, 300, 500</td>
</tr>
<tr>
<td>Modulation</td>
<td>DSSS</td>
</tr>
<tr>
<td>Propagation loss model</td>
<td>ns3::TwoRayGround</td>
</tr>
<tr>
<td>Propagation delay model</td>
<td>ns3::ConstantSpeed</td>
</tr>
<tr>
<td>Shadowing model</td>
<td>ns3::ObstacleShadowing</td>
</tr>
</tbody>
</table>
Padua with Junctions: Coverage

Without smart junction

With smart junction

much better coverage
Padua with Junctions: Redundancy

Without smart junction

With smart junction

Better coverage is paid with more messages transmitted (those at intersections are in addition to the regular ones)
Forging Position Attack

Having malicious nodes declaring false positions in their Hello Messages has a much greater impact on deterministic algorithms (ROFF) than probabilistic ones (Fast-Broadcast).
In Summary…

- Deterministic propagation algorithms such as ROFF ensure a smaller end-to-end delay than Fast-Broadcast
  - Greater redundancy
  - Determinism and collisions
  - Higher number of Hello Messages

- SJ-Fast-Broadcast and SJ-ROFF improve coverage greatly
  - At the cost of more retransmissions

Future Work, Projects, Thesis

Just a few examples

• Dynamic lower and upper bounds for Fast-Broadcast’s waiting time calculation
  – Based on vehicle density

• Junction identification backup mode
  – Reliance on GPS
  – Compute angle between received messages to identify vehicles within junctions

• Study regarding FANETs (Flying Ad-Hoc Networks)

• Simulations or Real experiments in Antwerp
  – NS3, Omnet, etc.
  – Actual 5G+VANET highway