
Comparison of TCP variants on satellite
communications

Claudio Palazzi
University of Padua

Padua, Italy
cpalazzi@math.unipd.it

Cristian Coreggioli
University of Padua

Padua, Italy
cristian.coreggioli@studenti.unipd.it

Abstract—TCP is one of the most used transport protocol
over the Internet. It is a connection-oriented protocol initially
developed for wired links. It can provide reliable delivery,
congestion control and flow control mechanisms.
In recent years, together with wired communication also wireless
communication become very popular. Traditional TCP versions
can be used also in wireless scenarios even if with lower
performances. As TCP was initially developed for wired links,
there is the need to develop TCP variants that can work with
high performance on wireless links too. So, many TCP variants
has been introduced like Reno, New Reno, Tahoe, Hybla. Some
of them are more prone to wireless environments.
A particular wireless scenario is a satellite network communica-
tion. It is characterize by very high latency and low reliability.
In this paper, a network simulator tool is used to compare three
TCP variants on satellite networks by focusing on congestion
windows computation and total number of received packets.

Index Terms—TCP New Reno, TCP Westwood, TCP Hybla,
Satellite communication, NS3

I. INTRODUCTION

Now a days, TCP is one of the most used transport protocol
on the Internet together with UDP. TCP is used for connection-
oriented transmissions while UDP is used for connection-less
transmissions. These two protocols together comprise almost
all the traffic on the Internet. They both work at transport layer
in the TCP/IP stack 1.
The TCP/IP stack is also composed by other layers that are
the Application, Internet and Link layer. Each of them has a
specific function and a specific set of protocols.

Fig. 1. TCP/IP Stack

For the purpose of this paper, only the TCP protocol is
considered.

a) Contributions: In this work, we make a comparison
between different TCP variants in a satellite network.
The idea is to use a network simulator tool to replicate
a satellite network topology and make experiments with
different versions of TCP to analyze their behaviour in this
particular wireless scenario. The purpose of the paper is to
compare the results of the simulations and see which TCP
variant is more prone to be used in a satellite wireless scenario.

Organization. The rest of the paper is structured as follows:
In section II, there is an introduction to the TCP protocol with
the focus on the congestion control mechanisms and a brief
description of the three TCP variants that will be used for the
experiments. In section III, we describe the satellite topology
that aims to be replicate by a network simulator tool. In section
IV, there is an introduction to the NS3 network simulator. The
section V explains how the topology in section III are actually
implemented in NS3 and which experiments has been done.
In section VI, the results of the experiments are plotted and
commented.

II. BACKGROUND

A. TCP protocol

The role of a transport protocol is to provide end-to-
end communication services to the applications. TCP [1] is
a connection-oriented transport protocol where a connection
between a Client and a Server must be established before start
sending data. This process is named ”Three-way Handshake”
2 and it is described in the following steps:

1) SYN: the Client wants to establish a connection with a
Server, so it sends a segment with a SYN (Synchronize
Sequence Number) number which informs the Server
that the Client wants to start a communication with the
provided sequence number;

2) SYN-ACK: the Server responds to the Client re-
quest with SYN-ACK message. The Acknowledgement
(ACK) is used to confirm the correct receive SYN
packet. Together with this, the Sender choose another
SYN number and sends it back to the Client, because
also the Server wants to open a connection to the Client;

3) ACK: the Client acknowledges the response related to
the received SYN message sent by the Server.

1



Fig. 2. Three-way Handshake

In this way two reliable connections are established, one
connection goes from the Client to the Server while the other
goes from the Server to the Client.
TCP provides a variety number of features, some of them are:

• Reliable data stream: the Sender is notified if the
packets are delivered correctly or not to the Receiver;

• Ordered segments: all the transmitted packages are
enumerate. Moreover, the TCP receiver rearrange the
segments order according to the sequence number;

• Retransmission of lost packets: some packets may be
lost, duplicate or delivered out of order due to several
reasons like network congestion or particular network
behaviours. Any packet that is not acknowledge is re-
transmitted;

• Error-free data transfer: corrupt packets are considered
lost and retransmitted;

• Flow control: this mechanism limits the rate at which
a Sender transfers data. This is done to ensure reliable
delivery and to do not overflow the Receiver;

• Congestion control: they are mechanisms to ensure that
a Sender does not overflow the network;

B. TCP Congestion Control

One of the main aspects of TCP is the Congestion Control.
This technique control the rate of data entering the network,
keeping the data flow below a rate that would make the
network collapse. Network congestion may occur for different
reasons, for example when a sender overflows the network
with too many packets or when the links have an insufficient
bandwidth.
The goal of TCP Congestion Control is to prevent the con-
gestion of the network or, when it has already happened, to
mitigate it efficiently. TCP uses a Congestion Window (cwnd)
that is maintained for each TCP session and represents the
maximum amount of data that can be sent into the network
without being acknowledged. The Congestion Window is
maintained by the sender and calculated by estimating how
much congestion there is on the link.
Depending on the variant of TCP, the congestion policy
implemented may change. Generally, we have the following
phases:

1) Slow Start phase: in this phase the Congestion Window
size increments exponentially after every Round Trip
Time (RTT1) up to a threshold value called ssthresh;

2) Congestion Avoidance phase: after the ssthresh value,
the size of the Congestion Window additive increase;

3) Congestion Detection phase: if a lost event occurs, TCP
assumes that is due to congestion and the Congestion
Window size is decreased according to specific rules.
The only way a sender can guess that congestion has
occurred is the need to retransmit a segment as retrans-
mission is needed to recover a missing packet.
Retransmission can occur in one of the two cases:

a) RTO expires: if the Retransmission Timeout (RTO)
expires, the ssthresh is reduced to half of the
current window size, the Congestion Window is
decreased at 1 and it starts again with Slow Start
phase;

b) 3 Duplicate ACKs: when the sender receives three
duplicate ACKs, the ssthresh value is reduced to
half of the current window size, the Congestion
Window value is set to the actual ssthresh value and
it starts again with Congestion Avoidance phase.

The TCP policy just described can be seen in the figure 3,
where the implemented version corresponds to TCP Reno.

Fig. 3. TCP Reno Congestion Control

In the literature, we have many different versions of TCP
where the main difference is in the approach used to compute
the Congestion Window. One way of classifying different TCP
versions is based on their application: high-speed variants are
characterized by a more aggressive behaviour like TCP Cubic
while wireless variants try to deal with problems typical for
wireless scenarios like lost packets due to transmission errors,
an example is TCP Hybla.
In this paper, we focus only on three versions of TCP: New
Reno, Westwood, Hybla.

C. TCP Reno / New Reno
TCP Reno [2] is one of the first version of TCP, together

with Tahoe. When a packet is lost, TCP Reno applies different

1it is the amount of time it takes for a signal to be sent plus the amount
of time it takes for acknowledgement of that signal to be received.

2



policies according to the reason of the detected loss.
If a packet loss is detected through the expired RTO, it
is consider as an indicator of massive congestion, so the
ssthresh is set to half of the current windows size and the
cwnd is set to 1. Then, Slow Start phase is applied.
On the contrary, if the sender receives three duplicate ACKs
we take it as a sign that the segment was lost, and so Reno
perform a ”Fast Retransmit2” technique that reduce the time
a sender waits before retransmitting a lost segment. After a
packet loss, the cwnd and the ssthresh is reduced to half of
the current windows size. Then, we continue with Congestion
Avoidance phase. In this case, the duplicate ACKs are an
indicator of weak congestion as the network is able to deliver
other packets regardless the one lost. The TCP Reno policies
are shown in figure 3.
TCP Reno performs poorly when we have multiple packet
losses in one window (it may happens in wireless links). The
reason is that, as it can only detect a single packet loss, if
there are multiple packet losses then the first information
about the lost segment comes when we receive the duplicate
ACKs. But the information about the second packet which
was lost will come only after the ACK for the retransmitted
first segment. It is also possible that the cwnd is reduced
many time as many packets lost are detected in one window,
causing a reduce transmission speed of the TCP connection.

TCP New Reno tries to alleviate this problem introducing
Partial ACKs messages. It is considered a more efficient
version as it can detect multiple packet losses that occurs one
close to another. It does not exit the Fast Recovery3 phase
and reset the ssthresh if Partial ACKs are received, it means
until all the data that was sent inside the specific window are
acknowledges. In this way it solves the problem of reducing
multiple time the cwnd. TCP New Reno supports multiple
retransmissions and it introduces ”Partial ACK”. When a
sender receives a new ACK, there are two cases:

1) If it is a Partial ACK, New Reno deduces than the next
segment was lost and it retransmit that segment. It does
not exit from Fast Recovery phase;

2) The ACK can acknowledges all the previous segments
and so it exits from Fast Recovery and the cwnd is set
to the ssthresh. Then, Congestion Avoidance is applied.

D. TCP Westwood

TCP Westwood [3] is a different TCP variant that improves
the performances of TCP Reno especially in wireless net-
works. It uses end-to-end principle that it does not require
inspection of TCP segments at intermediate nodes. The key
idea is to continuously estimate, at the TCP sender, the packet
rate of the connection by averaging the rate of returning
ACKs. The estimated connection rate is then used to compute

2when the sender receives three duplicate ACKs, it assumes that the packet
is lost and it retransmit that packet without waiting for a retransmission timer
to expire.

3sequence of operation that TCP Reno applies after receiving 3 duplicate
ACKs.

Congestion Window and Slow Start Threshold used after a
congestion occurs (after three duplicate acknowledgments or
after an expired timeout).
Westwood comes from the idea that if a connection is currently
achieving a given rate, then it can safely use the window
corresponding to that rate without causing congestion in the
network. It attempts to select the ssthresh and a cwnd which
are consistent with the effective bandwidth used at the time
of detected congestion. This approach makes Westwood more
robust to sporadic losses, especially in wireless domain.
We note that the wireless domain is not what was TCP initially
developed for. However, as wireless is very spread now a days,
we need TCP protocols that can work efficiently also in such
domain.

E. TCP Hybla

Traditional TCP versions like Tahoe, Reno, New Reno
perform poorly in connections with high link errors and long
propagation delay, like satellite radio link. They are very
disadvantaged because of the long Round Trip Time (RTT). In
case of satellite or wireless environment, as the TCP protocol
was designed to recover only from congestion situations,
losses of TCP segments due to possible errors on the network
are erroneously associated to congestion problems, causing an
inappropriate activation of the Congestion Avoidance mech-
anisms. Moreover, the long RTTs makes a reduction in the
cwnd that result in a throughput degradation (together with
unfair sharing of available resources).
TCP Hybla [4] tries to alleviate such problems. The idea
is to remove the dependency of the RTT in computing the
Congestion Window. The purpose of TCP Hybla is to obtain
for long RTT connections the same transmission rate of a
TCP connection with a lower RTT. It can be shown that this
goal can be achieved by making the throughput independent
from the RTT. Such independence is obtained by a special
coefficient. This coefficient is used to calculate both the Slow
Start Threshold and the Congestion Window. With Hybla, the
performances of TCP, especially for links that have a long RTT
like satellites, should improve drastically compared to original
TCP versions.

III. SATELLITE COMMUNICATIONS

The purpose of this paper is to use a network simulator to
make experiments on satellite communication 5 and analyze
the performances of previously described TCP variants. Three
topology of satellite communications has been identified:

1) Low Earth Orbit (LEO): it is an orbit that is relatively
close to Earth’s surface, the altitude is less than 1000 km.
It is the orbit most commonly used for satellite imaging,
as being near the surface allows it to take images of
higher resolution. To reach a global coverage, thousands
of LEO satellites are needed;

2) Geostationary Orbit (GEO): it is used by satellites that
need to stay constantly above one particular place over
Earth, such as telecommunication satellites. This way,
an antenna on Earth can be fixed to always stay pointed

3



towards that satellite without moving. It can also be
used by GPS, military purposes and weather monitoring
satellites because they can continually observe specific
areas to see how the weather change. Satellites in GEO
cover a large range of Earth so only few satellites (three
equally-spaced) can provide almost a global coverage.
The altitude of a GEO satellite is 35,786 km;

3) Medium Earth orbit (MEO): it comprises a wide
range of orbits anywhere between LEO and GEO. It
is very commonly used by navigation satellites, like the
European Galileo system 4.

Fig. 4. Galileo constellation

Galileo is a global navigation satellite system created by
the European Union. It uses a constellation of multiple
satellites to provide coverage across large parts of the
world all at once. The range of applications of Galileo is
very big, examples are tracking jets or getting directions
to your smartphone.

The figure 5 shows a graphical representation of the different
orbits and the corresponding satellites.

Fig. 5. LEO - MEO - GEO

IV. INTRODUCTION TO NS3 SIMULATOR

NS3 is a network simulator tool based on C++ that can
be used to perform a variety number of experiments in a
network domain. With NS3 you can create virtual nodes
(like computers in real life) and install on them applications,
Internet protocols and other services.

NS3 allows to create different type of connections, for exam-
ple, a Point-To-Point network represents a physical link that
connects only two nodes. The link has a number of attributes
that can be set like data rate and delay. If we extend the P2P
network between an arbitrary number of nodes we have a so
called CSMA network (in essence, it is a bus network with
many nodes). Moreover, we can create a wireless network,
made by a router and a number of connected nodes decided
by the administrator.
The NS3 simulator may be useful to test different protocols in
specific networks or make simulation before actually develop
and install a real network.

A. Building topology

The first step to perform when you are developing a project
in NS3 is to understand the topology you need to implement.
In this section we describe the main steps needed to build
a general topology using NS3 simulator. A large variety of
topology can be implemented, however, the general steps are
similar even if the topology we want to create are different.
The main steps are the following:

1) First, we create the ”nodes”, that are instances that can
represent different objects like a PC, router, etc. It is
done by instantiating the class NodeContainer;

2) Then we create the ”channel” between the nodes. It is the
representation of the network you want to create. More
precisely, this corresponds to peripheral cards (Network
Interface Card) and network cables, in reality. In NS3,
they are usually coupled together. As previously stated,
examples of channels are Point-To-Point, CSMA, WiFi;

3) In previous steps we have defined the ”nodes” and the
”channel” but they are not connected yet. To connect
it we use the class NetDeviceContainer that allows to
attach the channel created at point 2 with the nodes
created at point 1. Peripheral card are installed on each
node and the required connection is established;

4) At this point we have node and device configured but we
do not have any protocol stack installed on the nodes.
So, we need to install Internet rules on the nodes using
the class InternetStackHelper. It allows to install all the
Internet protocols (IP/TCP/UDP functionalities) on each
node;

5) Now, in order to let the nodes communicates we need to
assign IP addresses. Both IPV6 and IPV4 addresses can
be used. As an example, if we decide to assign IPV4
address we use the class Ipv4AddressHelper;

6) As last step, the routing table need to be populated using
the class Ipv4GlobalRoutingHelper.

The above steps are needed to create an arbitrary network
topology in NS3 that can be customize by the administrator.
In the following figure 6 there is an example of topology that
combine a P2P and CSMA network. More precisely, between
the nodes n0 and n1 there is a Point-to-Point network, while
between the nodes n1, n2, n3, n4 there is a CSMA network
that, in essence, corresponds to a bus link. The P2P network

4



is identified by the address 10.1.1.0 while the CSMA by the
address 10.1.2.0.

Fig. 6. P2P + CSMA topology example

B. Applications

Ones the topology we want to simulate is ready, we need
applications that generates traffic so that we can perform
analysis on the network. NS3 allows to create different type
of applications like Client-Server, UDP or TCP custom appli-
cations. Examples are:

• Echo Server application 7: an Echo server is an appli-
cation that connects a Client and a Server. The Client
sens a message to the Server and the Server receives the
message and it echos back to the Client. This application
can be based both on TCP or UDP transport protocols.
If it is UDP based, there is no need to establish a
connection and no guarantee of message delivery. The
packets are sent without taking care of possibly lost
packets. On the contrary, if it is TCP based, Client and
Server first need to establish a connection 2 and then they
can exchange messages. TCP also implements congestion
control mechanisms for lost packets;

• On-Off application: it is application that generates traffic
according to an On-Off pattern. It alternates two states,
On and Off. The duration of such states can be decided by
the administrator. The application generates traffic only
in the On state. The generated traffic is characterized
by specific “data rate” and “packet size”. Also this
application can be based on UDP or TCP;

• Bulk Application: the idea of a Bulk application is
different, it aims to send as much traffic as possible trying
to fill the bandwidth. It is made by a traffic generator
that sends data as fast as possible up to a certain value
specified by the user or until the application is stopped.
This type of application is usually based on TCP;

• Custom TCP/UDP application: it is an application that
is not pre-defied in NS3. You need to manually create all
the components and it can be useful if you want to hook
some methods to analyze specific results. An example
is attach a function to obtain the Congestion Window
values.

C. Analysis

Ones we have installed one or more applications on the
previously defined topology, we are ready to make experiments

Fig. 7. Echo Server Application NS3 code

and analyze the results. NS3 provides different features that
can be used to retrieve information from the simulations. The
main features used to analyze the results are:

• NetAnim: it stands for Network Animator. It is a software
tool able to provide a graphical representation of the
implemented topology where you can see the sending and
received packets on the way. It is an animated version of
how network looks in real and how data are transferred
from one node to other. Moreover, you can get other
information like the addresses of all the nodes, the time at
which packets are sent/received, what is the next hop for
the packet. It is useful to have a graphical representation
of the implemented topology. An example in shown in
figure 8;

Fig. 8. NetAnim tool example

• Flow Monitor: it is a tool to monitor the performance
of your simulation. By writing the corresponding code
inside an NS3 script, it can generate an ”.xml” file with
all the flows of packets together with the correspond-
ing information like source address, destination address,
packet size, etc. Then, this file must be properly process
to be able to read the statistics;

• ASCII trace: NS3 provides a ”tracing system” mecha-
nism that allows to trace every packet during the simu-
lation time. By using the class AsciiTraceHelper, a new
”.tr” file is generated with all information about packet
movement;

• Pcap trace: similarly to ASCII trace, NS3 enable the
possibility to generate a ”.pcap” file with all informa-
tion of the packets (e.g., Sequence number, Source IP,
destination IP, etc) that can be processed by tools like
Wireshark;

5



V. TEST-BET

A. LEO, MEO implementation

Up to now we have seen how to build a generic topology,
which kind of application we can install on it and some tools
to analyze the results of the simulations.
In this section we implement two of the satellite topology
described at the beginning of the paper and we perform some
experiments in order to test the TCP variants described in
section II.

Fig. 9. LEO network topology

In order to simulate a satellite communication in NS3 we
implement the topology shown in figure 9, where at each
link corresponds a Point-To-Point connection with a specific
data rate and delay as written in the figure 9. To differentiate
between LEO and MEO, we change the delay on the links
that connects the satellite to the antenna’s. For LEO the delay
is set to 20ms, for MEO is set to 90ms. Such delay aims to
represent the different altitude of the satellites. Moreover, we
introduce an error on the packet lost in the link that connects
the antenna to the satellite. This is done to simulate lost
packets as in reality we suppose that as we would have a
wireless communication with potentially high RTT, we may
lost some packets on the way.
Then, to generate traffic we implement a custom TCP ap-
plication because we want to hook a function to study the
Congestion Window for each TCP variant and the number of
received packets.

B. Experiments

In order to see the behaviour of the different TCP variants,
we perform some experiments on LEO and MEO satellite
topology. For each of them we build simulations with TCP
New Reno, Westwood and Hybla as transport protocol. The
simulations are the following:

• Exp1: implement an application that sends data from the
Server to the Client. All the links has no error on packet
lost;

• Exp2: implement the same application but including an
error on packet lost in the link connection between the
antenna and the satellite. Insert an error of 0.1% to
simulate some packet lost;

VI. RESULTS

All the experiments are made with a packet size of 536
bytes, an application data rate of 9 Mbps and the same network
topology.

A. LEO simulations

We consider here only the experiments regards the LEO
satellite communication. The experiments for LEO are done
with a simulation time of 180s. All the links should deliver
the packets correctly as we do not insert any packet lost error
rate. However, as the application data rate is 9 Mbps and
the bandwidth of the fourth link is only 1 Mbps, we obtain
that after a certain amount of time the channel will be full,
so it inevitably lost some packets. Indeed, we are creating
congestion in the network and so the TCP Congestion control
mechanism is triggered on. This behaviour can be seen from
the Congestion Window plot in figure 10. We can notice that
for Hybla we obtained five events (packet loss), for New Reno
just two and a half and with Westwood almost two events.
Of course the simulation time is the same so this behaviour
is due the the technical details of each TCP version. On the
other hand, if we analyze the Received packets plots we can
see that the values of TCP New Reno and Hybla are the
same while with Westwood the received packets are lower.
The exact numbers are provided in the following table.
Let’s now analyze figure 11, where we introduce an error
on 0.1% of lost packets in the link from the antenna to the
satellite. Now, many peaks can be seen from the plots of the
Congestion Windows as the TCP needs to retrasmit more
lost packets. As previously mentioned in the paper, each
TCP variants differs in the way of computing the Congestion
Window. We can notice the different behaviours from the
plots in figure 11. The most aggressive behaviour is with
TCP Westwood, as the cwnd becomes closed to zero at every
event (lost packet). The cwnd plot of New Reno is similar to
Westwood, however, after an event the values are not dropped
to zero but to a higher value. With Hybla instead, the general
values are higher compare to the other two variants and,
indeed, this is the variant that allows to transfer the highest
number of packets in the same amount of time. The specific
values are shown in the table below.
By this simulation, TCP Hybla is the most stable version in
this scenario.

LEO Received Packets

New Reno Westwood Hybla
0% pkt error 37.834 36.231 37.834

0.1% pkt error 31.177 21.562 37.054

B. MEO simulations

In this section we consider the topology of MEO satellites.
We recall that to simulate a MEO network we increase the
delay of the satellite links to 90ms, instead of 20ms for LEO.
In the case of no error rate in packet lost, to obtain a behaviour

6



Fig. 10. LEO simulations - 0% pkt lost error

that is closed to the one in figure 10, we need to increment
the simulation time up to 360s. This is reasonable as we
have incremented the delay in the satellite links and the RTT
increased. So, all the experiments in MEO are done with 360s
of simulation time.
Also in this case, the total number of received packet of Hybla
and New Reno are almost the same while Westwood has a
lower value. The specific numbers are in the table below. The
congestion window plots are very similar to the ones of LEO
as the behaviour of each TCP variant is always the same,
the difference is the received packets. As we increased the
simulation time, we obtain that more packets are received with
LEO but if we would fix the simulation time equal for both
LEO and MEO we would obtain that less received packets
with MEO as the RTT is higher.

MEO Received Packets

New Reno Westwood Hybla
0% pkt error 75.663 59.955 75.527

0.1% pkt error 23.825 15.363 36.052

VII. CONCLUSION

In this paper three TCP variants has been analyzed and
tested in satellite scenarios. The total number of received
packets and the Congestion Window values has been plotted
in all different simulations.
From all the simulations, TCP Hybla is the protocol that
performs better in both LEO and MEO satellite scenarios.
There is a high discrepancy compared to other two variants in

terms of number of received packets. With Hybla much more
packets can be sent in the same amount of time. This is due
to the fact that Hybla aims to increase the performance even
with high RTT.
On the contrary, the behaviour of the Congestion Window of
TCP New Reno and Westwood is similar, even if, in the case
of packet lost, the total number of received packet of New
Reno is higher.
From the Congestion Windows plots, the behaviour of TCP
Westwood is the most aggressive as at each packet lost, the
value of the cwnd is dropped. It is also confirmed by the lowest
values of received packets shown in the previous tables.

REFERENCES

[1] Santosh Kumar, Sonam Rai. 2012. Survey on Transport Layer Protocols:
TCP & UDP.

[2] A Comparative Analysis of TCP Tahoe, Reno, New-Reno, SACK and
Vegas.

[3] Mario Gerla, M.Y.Sanadidi, Ren Wang, Andrea Zanella. 2002. TCP
Westwood: congestion window control using bandwidth estimation.

[4] Carlo Caini, Rosario Firrincieli. 2004. TCP Hybla: a TCP enhancement
for heterogeneous networks.

7



Fig. 11. LEO simulations - 0.1% pkt lost error

Fig. 12. MEO simulations - 0% pkt lost error

8



Fig. 13. MEO simulations - 0.1% pkt lost error

9


	Introduction
	Background
	TCP protocol
	TCP Congestion Control
	TCP Reno / New Reno
	TCP Westwood
	TCP Hybla

	Satellite communications
	Introduction to NS3 simulator
	Building topology
	Applications
	Analysis

	Test-bet
	LEO, MEO implementation
	Experiments

	Results
	LEO simulations
	MEO simulations

	Conclusion
	References

