Heuristics for Combinatorial Optimization

Luigi De Giovanni

Dipartimento di Matematica, Università di Padova
Exact and heuristic methods

- **Exact methods**: devised to provide a provably optimal solution
- **Heuristic methods**: provides “good” solution with *no optimality guarantee*

Try to devise an exact approach, first!

- search for an efficient algorithm (e.g. shortest path-like problem)
- MILP model + MILP solver
- exploit some special property
- suitable (re)formulation of the problem
- search for (scientific) literature
- ...

... otherwise, heuristics! (*eurìskein = to find*)

- example: optimal transportation-network configuration ("hard" congestion models)
- limited available computational resources (time, software etc.)
When do we use heuristics?

- Sometime cannot be used, since an optimal solution is mandatory!
  - example: covering public transportation services at Deutsche Bahn
- NP-hard problem $\not\Rightarrow$ heuristics! (e.g., MILP solver are now able to solve some of them!)
- Use of heuristic to provide a “good” solution in a “reasonable” amount of time. Some appropriate cases:
  - limited amount of time to provide a solution (running time)
    - e.g., quick scenario evaluation in interactive Decision Support Systems
    - e.g., real time system
  - limited amount of computational resources (memory, CPUs, hardware)
  - limited amount of time to develop an effective solution (e.g., off-the-shelf solvers cannot effectively solve an available formulation)
  - limited amount of economic resources to develop a solution algorithm (e.g., costs for analysers and developers) or run it (e.g., costs for solver licenses, new hw etc.)
  - just estimates of the problem parameters are available (and we do not want to deal with uncertainty using robust or stochastic optimization...)
One (among many) possible classification

Specific heuristics
- exploits special features of the problem at hand
- may encode the current “manual” solution, good practice
- may be “the first reasonable algorithm that come to our mind”

General heuristic approaches (algorithmic “templates”)
- constructive heuristics
- simplified exact procedures
- meta-heuristics (algorithmic improvement schemes)
- approximation algorithms
- hyper-heuristics
- ...

K. Sörensen, “Metaheuristics – the metaphor exposed”, International Transactions in Operational Research (22), 2015 (p. 3-18)
Constructive heuristics

- Build a solution incrementally selecting a subset of alternatives
- Expansion criterion (no backtracking)

**Greedy algorithms** (strictly local optimality in the expansion criterion)

  Initialize solution $S$;
  While (there are choice to make)
    add to $S$ the *most convenient* (and feasible) element

- Widespread use:
  - simulate practice
  - simple implementation, small running times ($\sim$ linear)
  - often embedded as sub-procedure (e.g. in B&B)

- Sorting elements by **Dispatching rules**: static or dynamic scores
- Randomization (randomized scores, random among the best $n$ etc.)
- Primal / dual heuristics
Example: greedy algorithm KP/0-1

Item $j$ with $w_j$ and $p_j$; capacity $W$; select items maximizing profit!

1. Sort object according to ascending $\frac{p_j}{w_j}$.
2. Initialize: $S := \emptyset$, $\bar{W} := W$, $z := 0$
3. for $j = 1, \ldots, n$ do
4.   if $(w_j \leq \bar{W})$ then
5.     $S := S \cup \{j\}$, $\bar{W} := \bar{W} - w_j$, $z := z + p_j$.
6.   endif
7. endfor

- Static dispatching rule
Example: greedy algorithm KP/0-1

*Item j with w_j and p_j; capacity W; select items maximizing profit!*

1. Sort object according to ascending $\frac{p_j}{w_j}$.
2. Initialize: $S := \emptyset$, $\bar{W} := W$, $z := 0$
3. for $j = 1, \ldots, n$ do
   4. if ($w_j \leq \bar{W}$) then
      5. $S := S \cup \{j\}$, $\bar{W} := \bar{W} - w_j$, $z := z + p_j$.
   6. endif
5. endfor

- Static dispatching rule
Example: greedy algorithm KP/0-1

Item \( j \) with \( w_j \) and \( p_j \); capacity \( W \); select items maximizing profit!

1. Sort object according to ascending \( \frac{p_j}{w_j} \).

2. Initialize: \( S := \emptyset \), \( \bar{W} := W \), \( z := 0 \)

3. for \( j = 1, \ldots, n \) do

4. if \( (w_j \leq \bar{W}) \) then

5. \( S := S \cup \{j\} \), \( \bar{W} := \bar{W} - w_j \), \( z := z + p_j \).

6. endif

7. endfor

- Static dispatching rule
Example: Greedy algorithm for the Set Covering Problem

SCP: given set $M$ and $\mathcal{M} \subset 2^M$, $c_j$, $j \in \mathcal{M}$; select a min cost combination of subsets in $\mathcal{M}$ whose union is $M$

1. Initialize: $S := \emptyset$, $\bar{M} := \emptyset$, $z := 0$
2. if $\bar{M} = M$ ($\iff$ all elements are covered), STOP;
3. compute the set $j \notin S$ minimizing the ratio $\frac{c_j}{\sum_{i \in M \setminus \bar{M}} a_{ij}}$;
4. set $S := S \cup \{j\}$, $\bar{M} := \bar{M} \cup \{i : a_{ij} = 1\}$, $z := z + c_j$ and go to 2.

- Dynamic dispatching rule
Example: Greedy algorithm for the Set Covering Problem

**SCP**: given set $M$ and $\mathcal{M} \subset 2^M$, $c_j$, $j \in \mathcal{M}$; select a min cost combination of subsets in $\mathcal{M}$ whose union is $M$

1. Initialize: $S := \emptyset$, $\bar{M} := \emptyset$, $z := 0$
2. if $\bar{M} = M$ ($\iff$ all elements are covered), STOP;
3. compute the set $j \notin S$ minimizing the ratio $\frac{c_j}{\sum_{i \in M \setminus \bar{M}} a_{ij}}$;
4. set $S := S \cup \{j\}$, $\bar{M} := \bar{M} \cup \{i : a_{ij} = 1\}$, $z := z + c_j$ and go to 2.

- Dynamic dispatching rule
Example: Greedy algorithm for the Set Covering Problem

**SCP:** given set $M$ and $\mathcal{M} \subset 2^M$, $c_j, j \in \mathcal{M}$; select a min cost combination of subsets in $\mathcal{M}$ whose union is $M$

1. Initialize: $S := \emptyset, \bar{M} := \emptyset$, $z := 0$
2. if $\bar{M} = M$ ($\iff$ all elements are covered), STOP;
3. compute the set $j \notin S$ minimizing the ratio $\frac{c_j}{\sum_{i \in M \setminus \bar{M}} a_{ij}}$;
4. set $S := S \cup \{j\}, \bar{M} := \bar{M} \cup \{i : a_{ij} = 1\}$, $z := z + c_j$ and go to 2.

- Dynamic dispatching rule
Greedy for SCP: sorting criterion through an exact method

\[
\min \sum_{j \in \mathcal{M}} c_j x_j
\]

s.t. \[ \sum_{j \in \mathcal{M}} a_{ij} x_j \geq 1 \quad \forall i \in \mathcal{M} \]

\[ x_j \in \{0, 1\} \quad \forall j \in \mathcal{M} \]

1. Initialize: \( S := \emptyset, \tilde{\mathcal{M}} := \emptyset, z := 0 \)
2. if \( \tilde{\mathcal{M}} = \mathcal{M} \) (\( \iff \) all elements are covered), STOP;
3. solve linear programming relaxation of SCP (with \( x_j = 1 \) \( (j \in S) \)), and let \( x^* \) be the corresponding optimal solution;
4. let \( j = \arg \max_{j \notin S} x_j^* \);
5. set \( S := S \cup \{j\}, \tilde{\mathcal{M}} := \tilde{\mathcal{M}} \cup \{i : a_{ij} = 1\}, z := z + c_j \) and go to 2.
Algorithms embedding exact solution methods: in general

- Expansion criterion based on solving a sub-problem to optimality (once or at each expansion)
- Example: best (locally optimal!) element to add by MILP;
- Example: locally good element to add by LP relaxation of MILP;
- Normally longer running times but better final solution
- “Less greedy”: solving the sub-problem involves all (remaining) decisions variables (global optimality)

Remark: having a mathematical model is useful, even if the model does not directly solve the problem
Simplifying exact procedures: some examples

- Run Cplex on a MILP model for a limited amount of time
- Simplify an enumeration scheme (select only a limited subset of alternatives, e.g. *Beam Search*)

**Beam search**

- Partial breath-first visit of the enumeration tree
- Compute a score for each node (likelihood it leads to an optimal leave)
- At each level select the $k$ best-score nodes and branch on them
- Let: $n$ levels, $b$ branches per node, $k$ beam size
  - $n \cdot k$ nodes in the final tree
  - $n \cdot b \cdot k$ score evaluations
  - Calibrate $k$ so that specific time limits are met
- Variant (with some backtrack): recovery beam search
Simplifying exact procedures: some examples

- Run Cplex on a MILP model for a limited amount of time
- Simplify an enumeration scheme (select only a limited subset of alternatives, e.g. Beam Search)

**Beam search**

- Partial breath-first visit of the enumeration tree
  - compute a score for each node (likelihood it leads to an optimal leaf)
  - at each level select the \( k \) best-score nodes and branch on them
- Let: \( n \) levels, \( b \) branches per node, \( k \) beam size
  - \( n \cdot k \) nodes in the final tree
  - \( n \cdot b \cdot k \) score evaluations
  - calibrate \( k \) so that specific time limits are met
- Variant (with some backtrack): recovery beam search
Beam search for KP-0/1

\( n = 6 \) items; binary branching \((b = 2)\); \( k = 2 \);
(any reasonable) evaluation of nodes
Neighbourhood Search and Local Search

How to improve over a solution?

- (continuous solution space and suitable objective functions: gradient!)
- combinatorial optimization: “look around”, *neighborhood*!
- a neighbor identifies a search direction, try ‘many’ directions to find an improving one!

Let $X$ be a (discrete) set of feasible solutions, and consider $\min_{x \in X} f(x)$:

\[
\text{the neighbourhood of a solution } s \in X \text{ is } N : s \rightarrow N(s), \ N(s) \subseteq X
\]

Remark: $N(s)$ obtained by *sistematically* applying *small* changes to $s$
Neighbourhood Search and Local Search

How to improve over a solution?

- (continuous solution space and suitable objective functions: gradient!)
- combinatorial optimization: “look around”, *neighborhood*!
- a neighbor identifies a search direction, try ‘many’ directions to find an improving one!

Let $X$ be a (discrete) set of feasible solutions, and consider $\min_{x \in X} f(x)$:

> the *neighbourhood* of a solution $s \in X$ is $N : s \rightarrow N(s)$, $N(s) \subseteq X$

Remark: $N(s)$ obtained by *sistematically* applying *small* changes to $s$
Neighbourhood: an example

KP0/1, items $i(p_i, w_i)$: a(3,4), b(4,5), c(5,4), d(3,3), e(8,9), f(4,7), $W=20$

$s = \{a, b, d\} \quad \text{obj}(s) = 10$

$N(s) = \{t \subseteq X \mid t = s + i, i \in X \setminus s \text{ or } t = s - i, i \in s \text{ (insert/remove)}\}$

$t_1 = \{b, d\} \quad \text{obj}(t_1) = 7 \quad t_4 = \{a, b, c, d\} \quad \text{obj}(t_4) = 15$
$t_2 = \{a, d\} \quad \text{obj}(t_2) = 6 \quad t_5 = \{a, b, d, e\} \quad \text{infeasible}$
$t_3 = \{a, b\} \quad \text{obj}(t_3) = 7 \quad t_6 = \{a, b, d, f\} \quad \text{obj}(t_6) = 14$

Improving directions: from $s$ to $t_4$ and from $s$ to $t_6$

$N'(s) = \{t \subseteq X \mid t = s + i - j, i \in X, j \in s \text{ (swap)}\}$

$t_1 = \{c, b, d\} \quad \text{obj}(t_1) = 12 \quad t_7 = \{a, b, c\} \quad f(t_7) = 12$
$t_2 = \{e, b, d\} \quad \text{obj}(t_2) = 15 \quad t_8 = \{a, b, e\} \quad f(t_7) = 15$
$t_3 = \{f, b, d\} \quad \text{obj}(t_3) = 11 \quad t_9 = \{a, b, f\} \quad f(t_6) = 11$
$t_4 = \{a, c, d\} \quad \text{obj}(t_4) = 11$
$t_5 = \{a, e, d\} \quad \text{obj}(t_5) = 14 \quad \text{improving directions:}$
$t_6 = \{a, f, d\} \quad \text{obj}(t_6) = 10 \quad \text{all but } t_6$
Neighbourhood: an example

KP0/1, items $i(p_i, w_i)$: a(3,4), b(4,5), c(5,4), d(3,3), e(8,9), f(4,7), $W=20$

$s = \{a, b, d\}$ \hspace{1cm} $\text{obj}(s) = 10$

$N(s) = \{t \subseteq X \mid t = s + i, i \in X \setminus s \text{ or } t = s - i, i \in s \ (\text{insert/remove})\}$

$t_1 = \{b, d\}$ \hspace{1cm} $\text{obj}(t_1) = 7$ \hspace{1cm} $t_4 = \{a, b, c, d\}$ \hspace{1cm} $\text{obj}(t_4) = 15$

$t_2 = \{a, d\}$ \hspace{1cm} $\text{obj}(t_2) = 6$ \hspace{1cm} $t_5 = \{a, b, d, e\}$ \hspace{1cm} infeasible

$t_3 = \{a, b\}$ \hspace{1cm} $\text{obj}(t_3) = 7$ \hspace{1cm} $t_6 = \{a, b, d, f\}$ \hspace{1cm} $\text{obj}(t_6) = 14$

Improving directions: from $s$ to $t_4$ and from $s$ to $t_6$

$N'(s) = \{t \subseteq X \mid t = s + i - j, i \in X, j \in s \ (\text{swap})\}$

$t_1 = \{c, b, d\}$ \hspace{1cm} $\text{obj}(t_1) = 12$ \hspace{1cm} $t_7 = \{a, b, c\}$ \hspace{1cm} $f(t_7) = 12$

$t_2 = \{e, b, d\}$ \hspace{1cm} $\text{obj}(t_2) = 15$ \hspace{1cm} $t_8 = \{a, b, e\}$ \hspace{1cm} $f(t_7) = 15$

$t_3 = \{f, b, d\}$ \hspace{1cm} $\text{obj}(t_3) = 11$ \hspace{1cm} $t_9 = \{a, b, f\}$ \hspace{1cm} $f(t_6) = 11$

$t_4 = \{a, c, d\}$ \hspace{1cm} $\text{obj}(t_4) = 11$

$t_5 = \{a, e, d\}$ \hspace{1cm} $\text{obj}(t_5) = 14$ \hspace{1cm} improving directions:

$t_6 = \{a, f, d\}$ \hspace{1cm} $\text{obj}(t_6) = 10$ \hspace{1cm} all but $t_6$
Neighbourhood: an example

KP0/1, items $i(p_i, w_i): a(3,4), b(4,5), c(5,4), d(3,3), e(8,9), f(4,7), W=20$

$s = \{ a, b, d \}$  
$obj(s) = 10$

$N(s) = \{ t \subseteq X \mid t = s + i, i \in X \setminus s \text{ or } t = s - i, i \in s \text{ (insert/remove)} \}$

$t_1 = \{ b, d \}  \quad obj(t_1) = 7 \quad t_4 = \{ a, b, c, d \}  \quad obj(t_4) = 15$
$t_2 = \{ a, d \}  \quad obj(t_2) = 6 \quad t_5 = \{ a, b, d, e \}  \quad \text{infeasible}$
$t_3 = \{ a, b \}  \quad obj(t_3) = 7 \quad t_6 = \{ a, b, d, f \}  \quad obj(t_6) = 14$

Improving directions: from $s$ to $t_4$ and from $s$ to $t_6$

$N'(s) = \{ t \subseteq X \mid t = s + i - j, i \in X, j \in s \text{ (swap)} \}$

$t_1 = \{ c, b, d \}  \quad obj(t_1) = 12 \quad t_7 = \{ a, b, c \}  \quad f(t_7) = 12$
$t_2 = \{ e, b, d \}  \quad obj(t_2) = 15 \quad t_8 = \{ a, b, e \}  \quad f(t_7) = 15$
$t_3 = \{ f, b, d \}  \quad obj(t_3) = 11 \quad t_9 = \{ a, b, f \}  \quad f(t_6) = 11$
$t_4 = \{ a, c, d \}  \quad obj(t_4) = 11$
$t_5 = \{ a, e, d \}  \quad obj(t_5) = 14 \quad \text{improving directions:}$
$t_6 = \{ a, f, d \}  \quad obj(t_6) = 10 \quad \text{all but } t_6$
Basic Local Search (LS) scheme

Determine an initial solution $x$;

while ($\exists x' \in N(x) : f(x') < f(x)$) do {
  $x := x'$
}

return($x$) ($x$ is a local optimum*)

*Notice: “combinatorial (local) convexity” depends on $x$, $f$ and on $N(x)$
Basic Local Search (LS) scheme

Determine an initial solution $x$;

$$\textbf{while } (\exists \; x' \in N(x) : f(x') < f(x)) \; \textbf{do } \{$$

$$x := x'$$

$$\}$$

return($x$) (x is a local optimum*)

*Notice: “combinatorial (local) convexity” depends on $x$, $f$ and on $N(x)$
LS components

- a method to find an **initial solution**;
- a **solution representation**, which is the base for the following elements;
- the application that, starting from a solution, generates the **neighbourhood** (moves);
- the function that **evaluates** solutions;
- a neighbourhood **exploration strategy**.
Initial solution

- random
- from current practice
- (fast) heuristics
- randomized heuristics
- ...

- no theoretical preference: better initial solutions may lead to worst local optima
- random or randomized + multistart
Initial solution

- random
- from current practice
- (fast) heuristics
- randomized heuristics
- ...
- no theoretical preference: better initial solutions may lead to worst local optima
- random or randomized + multistart
Solution representation

- **Encodes** the features of the solutions (≈*formulation* of the problem)
- Very important: impact on the following design steps (related to how we imagine the solutions and the solution space to be explored!)
- Example: KP-0/1
  - list of loaded items
  - characteristic (binary) vector
  - ordered item sequence

**Decoding** may be needed

- Example: KP-0/1
  - list and vector representation: immediate decoding
  - ordered sequence: a solution is derived by loading items in the given order up to saturating the knapsack
Neighbourhood (moves)

A *neighborhood function* \( N : x \rightarrow N(x) \) defines the *elements* of a solution \( x \) and a modifying action (or *move*) that perturbs \( x \)

Given a solution \( x \) (neighbourhood *centre*), we apply a **move** to each **element** of \( x \) and we obtain a set of *neighbour solutions* (neighbourhood)

Example: add/remove neighborhood for KP-0/1:

- solution \( x \): a subset \( S \) of items
- solution element: an item \( i \)
- add/remove move: if \( i \in S \), remove it from \( S \), if \( i \notin S \), add it to from \( S \),
- neighborhood: all the items subsets obtained from \( S \) by adding/removing one item

Example: 2-opt neighborhood for TSP:

- solution \( x \): a sequence \( \Sigma \) of cities
- solution element: a sub-sequence
- 2-opt move: reverse the subsequence in \( \Sigma \)
- neighborhood: all the sequences obtained from \( \Sigma \) by reversing any subsequence
Neighbourhood (moves)

A neighborhood function $N : x \rightarrow N(x)$ defines the elements of a solution $x$ and a modifying action (or move) that perturbs $x$.

Given a solution $x$ (neighbourhood centre), we apply a move to each element of $x$ and we obtain a set of neighbour solutions (neighborhood).

Example: add/remove neighborhood for KP-0/1:
- solution $x$: a subset $S$ of items
- solution element: an item $i$
- add/remove move: if $i \in S$, remove it from $S$, if $i \notin S$, add it to $S$, neighborhood: all the items subsets obtained from $S$ by adding/removing one item.

Example: 2-opt neighborhood for TSP:
- solution $x$: a sequence $\Sigma$ of cities
- solution element: a sub-sequence
- 2-opt move: reverse the subsequence in $\Sigma$
- neighborhood: all the sequences obtained from $\Sigma$ by reversing any subsequence.
Neighbourhood (moves)

A neighborhood function \( N : x \to N(x) \) defines the elements of a solution \( x \) and a modifying action (or move) that perturbs \( x \)

Given a solution \( x \) (neighbourhood centre), we apply a move to each element of \( x \) and we obtain a set of neighbour solutions (neighborhood)

Example: add/remove neighborhood for KP-0/1:
- solution \( x \): a subset \( S \) of items
- solution element: an item \( i \)
- add/remove move: if \( i \in S \), remove it from \( S \), if \( i \notin S \), add it to \( S \)
- neighborhood: all the items subsets obtained from \( S \) by adding/removing one item

Example: 2-opt neighborhood for TSP:
- solution \( x \): a sequence \( \Sigma \) of cities
- solution element: a sub-sequence
- 2-opt move: reverse the subsequence in \( \Sigma \)
- neighborhood: all the sequences obtained from \( \Sigma \) by reversing any subsequence
Neighbourhood design

- Normally, implicit definition by *moves* (how to perturb)
  
  Example KP-0/1: (i) insert; (ii) remove, (iii) swap one in/out; *(iv)* ...

- **Neighbourhood size**: number of neighbour solutions
- **Evaluation complexity**: should be quick! possibly *incremental* evaluation
- **Neighbourhood complexity**: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)

- **Neighbourhood strength**: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)
  
  little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power

- **Connection**: any solution $x \in X$ can be obtained from any $y \in X$ by a sequence of moves (desirable feature)
Neighbourhood design

- Normally, implicit definition by *moves* (how to perturb)
  
  Example KP-0/1: (i) insert; (ii) remove, (iii) swap one in/out; (iv) ...

- **Neighbourhood size**: number of neighbour solutions

- **Evaluation complexity**: should be quick! possibly incremental evaluation

- **Neighbourhood complexity**: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)

- **Neighbourhood strength**: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)

  little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power

- **Connection**: any solution $x \in X$ can be obtained from any $y \in X$ by a sequence of moves (desireble feature)
Neighbourhood design

- Normally, implicit definition by *moves* (how to perturb)
  Example KP-0/1: (i) insert; (ii) remove, (iii) swap one in/out; (iv) ...

- **Neighbourhood size**: number of neighbour solutions
- **Evaluation complexity**: should be quick! possibly *incremental* evaluation
- **Neighbourhood complexity**: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)
- **Neighbourhood strength**: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)
  little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power
- **Connection**: any solution $x \in X$ can be obtained from any $y \in X$ by a sequence of moves (desirable feature)
Neighbourhood design

- Normally, implicit definition by *moves* (how to perturb)
  Example KP-0/1: (i) insert; (ii) remove, (iii) swap one in/out; (iv) ...

- **Neighbourhood size**: number of neighbour solutions

- **Evaluation complexity**: should be quick! possibly incremental evaluation

- **Neighbourhood complexity**: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)

- **Neighbourhood strength**: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)
little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power

- **Connection**: any solution $x \in X$ can be obtained from any $y \in X$ by a sequence of moves (desireable feature)
Neighbourhood design

- Normally, implicit definition by *moves* (how to perturb)
  Example KP-0/1: (i) insert; (ii) remove, (iii) swap one in/out; (iv) ...

- **Neighbourhood size**: number of neighbour solutions

- **Evaluation complexity**: should be quick! possibly *incremental* evaluation

- **Neighbourhood complexity**: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)

- **Neighbourhood strength**: ability to produce good local optima
  (notice: local optima depend also on the neighbourhood definition)
  little perturbations, small size, fast evaluation, less strong *vs.* large perturbation, large size, slow evaluation, larger improving power

- **Connection**: any solution $x \in X$ can be obtained from any $y \in X$ by a sequence of moves (desirable feature)
Neighbourhood design

- Normally, implicit definition by *moves* (how to perturb)
  Example KP-0/1: (i) insert; (ii) remove, (iii) swap one in/out; *(iv)* ...

- **Neighbourhood size:** number of neighbour solutions
- **Evaluation complexity:** should be quick! possibly *incremental* evaluation
- **Neighbourhood complexity:** time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)

- **Neighbourhood strength:** ability to produce good local optima
  (notice: local optima depend also on the neighbourhood definition)
  little perturbations, small size, fast evaluation, less strong **vs.**
  large perturbation, large size, slow evaluation, larger improving power

- **Connection:** any solution $x \in X$ can be obtained from any $y \in X$ by a sequence of moves (desireble feature)
Neighbourhood: KP/0-1 example

- Insertion neighbourhood has $O(n)$ size; Swap neigh. has $O(n^2)$ size
- A stronger neigh. by allowing also double-swap moves, size $O(n^4)$
- An insertion or a swap move can be incrementally evaluated in $O(1)$
- Overall neigh. complexity: insertion $O(n)$, swap $O(n^2)$
- Insertion neigh. or Swap neigh. are not connected.
  Insertion+removing neigh. is connected
Neighbourhood definition: solution representation is important!

- Insertion, swapping, removing moves are based on list or vector representation!
- Difficult to implement (and imagine) them on the ordered-sequence representation
- For the ordered-sequence representation, moves that perturb the order are more natural, e.g., pairwise interchange:
  - from $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$
    to $1 \rightarrow 6 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 7$ (pairwise interchange 2 and 6)
    or $5 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 6 \rightarrow 7$ (pairwise interchange 1 and 5)
    or ...
  - size is $O(n^2)$, connected (with respect to maximal solutions)
  - neigh. evaluation in $O(n)$ (no fully-incremental evaluation)
  - overall complexity $O(n^3)$
Solution evaluation function

- Evaluation is used to compare neighbours to the centre solution (and between each others)

- Normally, the objective function

- May include some extra-feature (e.g. combined by means of a weighted sum) to identify “more promising” solutions
  - In KP-0/1, “prefer” solutions with larger residual capacity
    \[ \tilde{f}(X) = \sum_{i \in X} p_i + \epsilon (W - \sum_{i \in X} w_i) \]

- May include penalty terms (e.g. infeasibility level to allow visiting infeasible solutions)
  - In KP-0/1, let \( X \) be the subset of loaded items
    \[ \tilde{f}(X) = \alpha \sum_{i \in X} p_i - \beta \max \{0, \sum_{i \in X} w_i - W\} \quad (\alpha, \beta > 0) \]
    it potentially activates “removing” move in a connected “insertion+removing” neighbourhood
Exploration strategies

Which improving neighbour solution to select?

- **Stepest descent** strategy: the best neighbour (all evaluated!)
- **First improvement** strategy: the first improving neighbour. Sorting matters! (heuristic, random)
- **Granularization**: apply a filter (deterministic rules, a pre-trained classifier) to exclude part of the neighbours

Possible variants:

- **random** choice among the best $k$ neighbours
- **store** interesting second-best neighbours and use them as recovery starting points for LS
Sample application to TSP

- First question: is LS justified? Exact approaches exists, not suitable for large instances and small running times. Notice that TSP is NP-Hard

- Notation and assumptions:
  \[ G = (V, A) \] (undirected)
  \[ G \] is complete
  \[ |V| = n \]
  cost \( c_{ij} \) (may be \( c_{ji} \) in the symmetric case)

- Define all the elements of LS
LS for TSP: initial solution by Nearest Neighbour heuristic

1. select node \( i_0 \in V; \) \( cost = 0, \) \( Cycle = \{i_0\}, \) \( i = i_0. \)
2. select \( j = \arg \min_{j \in V \setminus Cycle} \{c_{ij}\} \)
3. set \( Cycle = Cycle \cup \{j\}; \) \( cost = cost + c_{ij} \)
4. set \( i = j \)
5. if still nodes to be visited, go to 2
6. \( Cycle = Cycle \cup \{i_0\}; \) \( cost = cost + c_{ii_0} \)

- \( O(n^2) \) (or better): simple but not effective (too greedy, last choices are critical)
- repeat with different \( i_0 \)
- randomize Step 2
LS for TSP: Best Insertion

1. Choose the nearest nodes $i$ and $j$: \( C = i - j - i \), \( cost = c_{ij} + c_{ji} \)
2. select the node \( r = \arg \min_{i \in V \setminus C} \{ c_{ir} + c_{rj} - c_{ij} : i, j \text{ consecutive in } C \} \)
3. modify $C$ by inserting $r$ between nodes $i$ and $j$ minimizing $c_{ir} + c_{rj} - c_{ij}$
4. if still nodes to be visited, go to 2.

- \( O(n^3) \): rather effective
- may randomize initial pair and/or $r$ selection
**LS for TSP: Nearest/Farthest Insertion**

1. Choose the two nearest/farthest nodes $i$ and $j$ and build the initial cycle $C = i - j - i$
2. Select the node $r = \arg \min_{v \in V \setminus C} \left\{ \max_{v \in V \setminus C} \{ c_{vj} : j \in C \} \right\}$
3. Modify $C$ by inserting $r$ between pairs of consecutive nodes $i$ and $j$ in the current cycle such that $c_{ir} + c_{rj} - c_{ij}$ is minimized
4. If still nodes to be visited, go to 2.

- $O(n^3)$: rather effective (farthest version better, more balanced cycles)
- May randomize initial pair and/or $r$ selection
LS for TSP: Nearest/Farthest Insertion

1. Choose the two nearest/farthest nodes $i$ and $j$ and build the initial cycle $C = i - j - i$

2. Select the node $r = \arg\min_{v \in V \setminus C} / \max_{v \in V \setminus C} \{c_{vj} : j \in C\}$

3. Modify $C$ by inserting $r$ between pairs of consecutive nodes $i$ and $j$ in the current cycle such that $c_{ir} + c_{rj} - c_{ij}$ is minimized

4. If still nodes to be visited, go to 2.

- $O(n^3)$: rather effective (farthest version better, more balanced cycles)
- May randomize initial pair and/or $r$ selection
LS for TSP: Solution Representation

- **arc representation**: arcs in the solution, e.g. as a binary adjacency matrix
- **adjacency representation**: a vector of $n$ elements between 1 and $n$ (representing nodes), $v[i]$ reports the node to be visited after node $i$
- **path representation**: ordered sequence of the $n$ nodes (a solution is a node permutation!)
LS for TSP: $k$-opt neighbourhoods

Concept: replace $k$ arcs in with $k$ arcs out [Lin and Kernighan, 1973]
LS for TSP: $k$-opt neighbourhoods

- In terms of path representation, 2-opt is a substring reversal
- Example: $<1, 2, 3, 4, 5, 6, 7, 8, 1> \rightarrow <1, 2, 6, 5, 4, 3, 7, 8, 1>$
- 2-opt size: $\frac{(n-1)(n-2)}{2} = O(n^2)$
- $k$-opt size: $O(n^k)$
- Neighbour evaluation: incremental for the symmetric case, $O(1)$
- 2-opt move evaluation: reversing sequence between $i$ and $j$ in the sequence $<1 \ldots h, i, \ldots, j, l, \ldots, 1>$

$$C_{new} = C_{old} - c_{hi} - c_{jl} + c_{hj} + c_{il}$$

- which $k$? $k = 2$ good, $k = 3$ fair improvement, $k = 4$ little improvement
LS for TSP: $k$-opt neighbourhoods

- In terms of path representation, 2-opt is a substring reversal
- Example: $<1, 2, 3, 4, 5, 6, 7, 8, 1> \rightarrow <1, 2, 6, 5, 4, 3, 7, 8, 1>$
- 2-opt size: $\frac{(n-1)(n-2)}{2} = O(n^2)$
- $k$-opt size: $O(n^k)$
- Neighbour evaluation: incremental for the symmetric case, $O(1)$
- 2-opt move evaluation: reversing sequence between $i$ and $j$ in the sequence $<1 \ldots h, i, \ldots, j, l, \ldots, 1>$

$$C_{new} = C_{old} - c_{hi} - c_{jl} + c_{hj} + c_{il}$$

- which $k$? $k = 2$ good, $k = 3$ fair improvement, $k = 4$ little improvement
LS for TSP: $k$-opt neighbourhoods

- In terms of path representation, 2-opt is a substring reversal
- Example: $<1, 2, 3, 4, 5, 6, 7, 8, 1> \rightarrow <1, 2, 6, 5, 4, 3, 7, 8, 1>$
- 2-opt size: $\frac{(n-1)(n-2)}{2} = O(n^2)$
- $k$-opt size: $O(n^k)$
- Neighbour evaluation: incremental for the symmetric case, $O(1)$
- 2-opt move evaluation: reversing sequence between $i$ and $j$ in the sequence $<1 \ldots h, i, \ldots, j, l, \ldots, 1>$

$$C_{\text{new}} = C_{\text{old}} - c_{hi} - c_{jl} + c_{hj} + c_{il}$$

- which $k$? $k = 2$ good, $k = 3$ fair improvement, $k = 4$ little improvement
LS for TSP: evaluation function and exploration strategy

No specific reason to adopt special choices:

- Neighbours evaluated by the objective function (cost of the related cycle)
- Steepest descent (or first improvement)
Neighbourhood search and Trajectory methods

- LS trades-off simplicity/efficiency and effectiveness, but it gets stuck in local optima
- Need to escape from local optima (only convexity implies global optimality)
  - Random multistart (random initial solutions)
  - Variable neighbourhood (change neighbourhood if local optimum)
  - Randomized exploration strategy (e.g. random among best $k$ neigh)
  - Backtrack (memory and recovery of unexplored promising neighbours)
  - ...

*Neighbourhood search or Trajectory methods*: a walk through the solution space, recording the best visited solution
Neighbourhood search and Trajectory methods

- LS trades-off simplicity/efficiency and effectiveness, but it gets stuck in local optima
- Need to escape from local optima (only convexity implies global optimality)
  - Random multistart (random initial solutions)
  - Variable neighbourhood (change neighbourhood if local optimum)
  - Randomized exploration strategy (e.g. random among best $k$ neigh)
  - Backtrack (memory and recovery of unexplored promising neighbours)
  - ...

*Neighbourhood search or Trajectory methods*: a walk through the solution space, recording the best visited solution
Avoiding loops

- A walk escaping local optima may worsen the current solution and fall into loops
- In order to avoid loops:
  - (only improving solutions are accepted = LS)
  - randomized exploration
    - alternative random ways
    - does not exploit information on the problem (structure)
    - e.g. Simulated Annealing
  - memory of visited solutions
    - store visited solution and do not accept them
    - structure can be exploited
    - e.g. Tabu Search
- Notice. Visiting a same solution is allowed: we just need to avoid choosing the same neighbour
Avoiding loops

- A walk escaping local optima may worsen the current solution and fall into loops
- In order to avoid loops:
  - (only improving solutions are accepted = LS)
  - randomized exploration
    ▶ alternative random ways
    ▶ does not exploit information on the problem (structure)
    ▶ e.g. Simulated Annealing
  - memory of visited solutions
    ▶ store visited solution and do not accept them
    ▶ structure can be exploited
    ▶ e.g. Tabu Search
- Notice. Visiting a same solution is allowed: we just need to avoid choosing the same neighbour
Simulated Annealing [Kirkpatrick, 1983]

Metaphor: annealing process of, e.g., metals. Alternate warming/cooling to obtain “optimal” molecular structure

search scheme (one possible):

Determine an initial solution \( x \)
iintialize: best solution \( x^* \leftarrow x \) and iteration \( k = 0 \)
repeat
\[ k \leftarrow k + 1 \]
generate a (random) neighbour \( y \)
if \( y \) is better than \( x^* \), then \( x^* \leftarrow y \)
\( \text{Loss} = \max\{0, f(y) - f(x)\} \) (minimization problems)

accept \( y \) with probability \( p = \exp\left(-\frac{\text{Loss}}{T(k)}\right) \)
if accepted, \( x \leftarrow y \)
until (no further neighbours of \( x \), or max trials)
return \( x^* \)

\[^1\text{Loss} = \max\{0, f(x) - f(y)\} \) (maximization problems)\]
SA: cooling schedule

- Parameter \( T(k) \): temperature, \textit{cooling schedule}

- \( T(\text{first}) > T(\text{last}) \): the probability of accepting not improving solutions is decreasing over time

- Example: “stepwise” cooling schedule, defined by parameters
  - initial \( T \) (maximum)
  - number of iterations at constant \( T \)
  - \( T \) decrement
  - minimum \( T \)

+ (one of) the first NS metaphors
+ provably converges to the global optimum (in theory, under strong assumptions)

+ simple to implement
  - there are better (on-the-field) NS metaheuristics!
Tabu Search [Fred Glover, 1989]

- **Memory** is used to avoid cycling: store *information on visited solutions* (allows exploiting structure of the problem)
- Basic idea: store visited solutions and **exclude them** (\(=\) make tabu) from neighbourhoods
- Implementation by storing **Tabu List** of the *last* \(t\) solutions

\[
T(k) := \{x^{k-1}, x^{k-2}, \ldots, x^{k-t}\}
\]

at iteration \(k\), avoid cycles of length \(\leq t\)
- \(t\) is a parameter to be calibrated (see example*)
- From \(N(x)\) to \(N(x, k)\): the neighborhood of a same solution may be different at different times, it depends in iteration \(k\)
- Notice. Visiting a same solution is allowed: we just need to avoid choosing the same neighbour (recall \(N(x, k) \neq N(x, l)\), see example**)
Tabu Search [Fred Glover, 1989]

- **Memory** is used to avoid cycling: store *information on visited solutions* (allows exploiting structure of the problem)
- Basic idea: store visited solutions and **exclude them** (= make tabu) from neighbourhoods
- Implementation by storing **Tabu List** of the last *t* solutions

\[ T(k) := \{x^{k-1}, x^{k-2}, \ldots, x^{k-t}\} \]

at iteration *k*, avoid cycles of length \(\leq t\)
- *t* is a parameter to be calibrated (see example*)
- From \(N(x)\) to \(N(x, k)\): the neighborhood of a same solution may be different at different times, it depends in iteration *k*
- Notice. Visiting a same solution is allowed: we just need to avoid choosing the same neighbour (recall \(N(x, k) \neq N(x, l)\), see example**)
*Example: tabu list length

12 - 13 - 14 - 11 - 7 - 10 - 12
13 - 10 - 12 - 14 - 9 - 8 - 13
7 - 3 - 12 - 10 - 41 - 10 - 13
10 - 11 - 13 - 13 - 14 - 12 - 11
12 - 12 - 13 - 13 - 11 - 8 - 6

\[ t = 6 \Rightarrow \text{loc opt 6} \]

\[ t = 5 \Rightarrow \text{loop} \]
**Example: re-visiting solutions**

\[
\begin{align*}
12 & -13 -14 - 11 - 7 -10 - 12 \\
13 & -10 -12 - 14 - 9 - 8 - 13 \\
7 & -3 - 12 - 8 - 41 -10 - 13 \\
10 & -11 -13 - 13 -14 - 12 -11 \\
12 & -12 -13 -13 -11 - 8 - 6
\end{align*}
\]

\[t = 6 \Rightarrow \text{loc opt 6}\]

\[t = 5 \Rightarrow \text{Dloc opt 3}\]
Storing “information” instead of solutions

- Tabu List (may) store information on the last $t$ solutions (short term memory)
- E.g., often moves are stored instead of solutions because of
  - efficiency (checking equality between full solutions may take long time and slow down the search)
  - storage capacity (storing full solution information may take large memory)
- may declare more tabu directions (see aspiration)
- Example: TSP, 2-opt. TL stores the last $t$ pairs of arcs added (to avoid arcs or involved nodes)

In any case, $t$ (tabu tenior) has to be calibrated:
- too small: TS may cycle
- too large: too many tabu neighbours
Storing “information” instead of solutions

- Tabu List (may) store information on the last \( t \) solutions (short term memory)
- E.g., often moves are stored instead of solutions because of
  - efficiency (checking equality between full solutions may take long time and slow down the search)
  - storage capacity (storing full solution information may take large memory)
- may declare more tabu directions (see aspiration)
- Example: TSP, 2-opt. TL stores the last \( t \) pairs of arcs added (to avoid arcs or involved nodes)
- In any case, \( t \) (tabu tenior) has to be calibrated:
  - too small: TS may cycle
  - too large: too many tabu neighbours
Aspiration criteria

- By storing “information”, unvisited solutions may be declared as tabu
- If a tabu neighbour solution satisfies one or more aspiration criteria, tabu list is overruled
- Aspiration criterion: a solution is “interesting”, e.g. the solution is the best found so far (not visited before!)
Stopping criteria

- (A solution is found satisfying an optimality certificate, if available...)
- Maximum number of iterations, or time limit *
- Maximum number of NOT IMPROVING iterations *
- Empty neighbourhood and no overruling
  - perhaps $t$ is too long
  - perhaps visit non-feasible solutions (e.g. COP with many constraints): modifying the evaluation function, alternate dual and primal search

* parameter to be calibrated
Stopping criteria

- (A solution is found satisfying an optimality certificate, if available...)
- Maximum number of iterations, or time limit *
- Maximum number of NOT IMPROVING iterations *
- Empty neighbourhood and no overruling
  - perhaps \( t \) is too long
  - perhaps visit non-feasible solutions (e.g. COP with many constraints): modifying the evaluation function, alternate dual and primal search

* parameter to be calibrated
**TS basic scheme**

Input: neigh. function $N$, evaluation function $\tilde{f}$, objective function $f$, tabu tenure $t$

Notation: incumbent-current-neighbor solution $x^*-x-y$, iteration counter $k$, Tabu List $T$

Determine an **initial** solution $x$; $k := 0$, $T(k) = \emptyset$, $x^* = x$;

repeat

let $y = \text{arg best}(\{\tilde{f}(y), y \in N(x, k)\} \cup \{y \in N(x) \setminus N(x, k) \mid y \text{ satisfies aspiration}\})$

compute $T(k + 1)$ from $T(k)$ by inserting $y$ (or move $x \leftrightarrow y$, or information) and, if $|T(k)| \geq t$, removing the elder solution (or move or information)

if $f(y)$ better than $f(x^*)$ then let $x^* := y$

$x = y$, $k++$

until (stopping criteria)

return ($x^*$).

Same basic elements as LS (+ tabu list, aspiration, stop)
TS basic scheme

Input: neigh. function $N$, evaluation function $\tilde{f}$, objective function $f$, tabu tenure $t$

Notation: incumbent-current-neighbor solution $x^*-x-y$, iteration counter $k$, Tabu List $T$

Determine an initial solution $x$; $k := 0$, $T(k) = \emptyset$, $x^* = x$;

repeat

let $y = \text{arg best}\left\{\tilde{f}(y), y \in N(x, k)\right\} \cup \{y \in N(x) \setminus N(x, k) \mid y \text{satisfies aspiration}\}$

compute $T(k + 1)$ from $T(k)$ by inserting $y$ (or move $x \mapsto y$, or information) and, if $|T(k)| \geq t$, removing the elder solution (or move or information)

if $f(y)$ better than $f(x^*)$ then let $x^* := y$

$x = y$, $k++$

until (stopping criteria)

return ($x^*$).

Same basic elements as LS (+ tabu list, aspiration, stop)
Intensification and diversification phases

- **Intensification** explores more solutions in a small portion of the solution space: solutions with similar features.

- **Diversification** moves the search towards unexplored regions of the search space: solutions with different features.

- The basic search scheme may be improved by alternating intensification and diversification, to find and exploit new promising regions and, hence, new (and possibly better) local optima.

- In TS, **memory** may play a role (store information on visited solutions, e.g. to allow avoiding the same features during diversification).
  
  - e.g., in TSP, maintain statistics on how many times each arc has been included in a visited solution and either (i) fix more frequent arcs for intensification or (ii) exclude more frequent arcs for diversification.

Intensification and diversification are general principles that can be applied to any metaheuristics (not only to TS).
Intensification and diversification phases

- **Intensification** explores more solutions in a small portion of the solution space: solutions with similar features.
- **Diversification** moves the search towards unexplored regions of the search space: solutions with different features.
- The basic search scheme may be improved by alternating intensification and diversification, to find and exploit new promising regions and, hence, new (and possibly better) local optima.
- In TS, memory may play a role (store information on visited solutions, e.g., to allow avoiding the same features during diversification).
  - E.g., in TSP, maintain statistics on how many times each arc has been included in a visited solution and either (i) fix more frequent arcs for intensification or (ii) exclude more frequent arcs for diversification.

Intensification and diversification are general principles that can be applied to any metaheuristics (not only to TS).
Intensification and diversification phases

- **Intensification** explores more solutions in a small portion of the solution space: solutions with similar features.
- **Diversification** moves the search towards unexplored regions of the search space: solutions with different features.

The basic search scheme may be improved by **alternating** intensification and diversification, to find and exploit new promising regions and, hence, new (and possibly better) local optima.

In TS, **memory** may play a role (store information on visited solutions, e.g. to allow avoiding the same features during diversification).

- e.g., in TSP, maintain statistics on how many times each arc has been included in a visited solution and either (i) fix more frequent arcs for intensification or (ii) exclude more frequent arcs for diversification.

Intensification and diversification are general principle that can be applied to any metaheuristics (not only to TS).
Intensification and diversification phases

- **Intensification** explores more solutions in a small portion of the solution space: solutions with similar features.
- **Diversification** moves the search towards unexplored regions of the search space: solutions with different features.
- The basic search scheme may be improved by alternating intensification and diversification, to find and exploit new promising regions and, hence, new (and possibly better) local optima.
- In TS, **memory** may play a role (store information on visited solutions, e.g., to allow avoiding the same features during diversification).
  - e.g., in TSP, maintain statistics on how many times each arc has been included in a visited solution and either (i) fix more frequent arcs for intensification or (ii) exclude more frequent arcs for diversification.

Intensification and diversification are a general principle that can be applied to any metaheuristics (not only to TS).
Intensification

- enumerate (implicitly) all the solutions in a (small) region where good solutions have been found (e.g. fix some variables in a MILP model and run a solver)
- temporarily use a more detailed neighbourhood (e.g. allowing many possible moves)
- relax aspiration criteria
- modify evaluation function to penalize far away solutions
Diversification

- use “larger” neighbourhoods (e.g. $k$-opt $\rightarrow (k + 1)$-opt in TSP, until a better solution is found [Variable Neighborhood Descent])
  - in the case of tabu search, if more neighbourhoods are used, they rely on independent tabu lists
- modify the evaluation function to promote far away solutions
- use the last local minimum to build a far-away (“complementary”) solution to start a new intensification
- use a long term memory to store the “more visited” features and exclude them (or penalize them in the evaluation function)
  - as a quick-and-dirty approximation, use a dynamic tabu list length $t$: $t$ is short during intensification and long during diversification (we may start with small $t = t_0$ and increment it as long as we do not find improving solutions, until a maximum $t$ is reached or an improvement resets $t = t_0$ for a new intensification)
Example: Tabu Search for Graph Coloring

- move: change the color of one node at a time (no new color). 12 neighbours: \(_{VVGRVG, G}{VGRVG, R}{RGRVG, RGGRVG, RVRRVG}\) etc. none feasible!

- objective function to evaluate: little variations (plateau!)

\(\tilde{f}\) that penalizes non-feasibilities, includes (weighted sum) other features, but ...

Luigi De Giovanni
Heuristics for Combinatorial Optimization
Too many constraints: change perspective!

Given a $k$-coloring, search for a $(k - 1)$-coloring

- Initial solution: delete one color by changing it in one of the others
- Evaluation $\tilde{f}$: number of monochromatic edges, to be minimized (minimize non-feasibilities\(^2\))
- Move: as before, change the color of one vertex
- **Granular TS**: consider only nodes belonging to monochromatic edges
- Tabu list: last $t$ pairs $(v, r)$ (vertex $v$ kept color $r$)

- If $\tilde{f} = 0$, new feasible solution with $k - 1$ colors: set $k = k - 1$ and start again!

\(^2\)Searching for solutions that minimize constraint infeasibilities is also said “dual search”, as opposed to the usual search for better solutions in terms of objective function, also said “primal search”
Too many constraints: change perspective!

Given a $k$-coloring, search for a $(k - 1)$-coloring

- Initial solution: delete *one* color by changing it in *one* of the others
- Evaluation $\tilde{f}$: number of *monochromatic edges*, to be minimized (minimize non-feasibilities$^2$)
- Move: as before, change the color of one vertex
- *Granular TS*: consider only nodes belonging to monochromatic edges
- Tabu list: last $t$ pairs $(v, r)$ (vertex $v$ kept color $r$)

- if $\tilde{f} = 0$, new feasible solution with $k - 1$ colors: set $k = k - 1$ and start again!

---

$^2$Searching for solutions that minimize constraint infeasibilities is also said “dual search”, as opposed to the usual search for better solutions in terms of objective function, also said “primal search”
Too many constraints: change perspective!

Given a $k$-coloring, search for a $(k - 1)$-coloring

- Initial solution: delete one color by changing it in one of the others
- Evaluation $\tilde{f}$: number of monochromatic edges, to be minimized (minimize non-feasibilities\(^2\))
- Move: as before, change the color of one vertex
- **Granular TS**: consider only nodes belonging to monochromatic edges
- Tabu list: last $t$ pairs $(v, r)$ (vertex $v$ kept color $r$)

- if $\tilde{f} = 0$, new feasible solution with $k - 1$ colors: set $k = k - 1$ and start again!

\(^2\)Searching for solutions that minimize constraint infeasibilities is also said “dual search”, as opposed to the usual search for better solutions in terms of objective function, also said “primal search”
Population based heuristics

At each iteration

- a set \(^3\) of solutions (population) is maintained
- some solutions are recombinined \(^4\) to obtain new solutions (among which a better one, hopefully)

Several paradigms (often just the metaphor changes!\(^5\))

- Evolutionary Computation (Genetic algorithms)
- Scatter Search and path relinking
- Ant Colony Optimization
- Swarm Optimization
- etc.

General purpose (soft computing), easy to implement (rather than effective!)

\(^3\)In trajectory/based metaheuristics, a single
\(^4\)In trajectory/based metaheuristics, perturbation, move
\(^5\)K. Sörensen, “Metaheuristics – the metaphor exposed”
Population based heuristics

At each iteration

- a set \(^3\) of solutions (population) is maintained
- some solutions are recombined \(^4\) to obtain new solutions (among which a better one, hopefully)

Several paradigms (often just the metaphor changes!\(^5\))

- Evolutionary Computation (Genetic algorithms)
- Scatter Search and path relinking
- Ant Colony Optimization
- Swarm Optimization
- etc.

General purpose (soft computing), easy to implement (rather than effective!)

---

\(^3\) In trajectory/based metaheuristics, a single

\(^4\) In trajectory/based metaheuristics, perturbation, move

\(^5\) K. Sörensen, “Metaheuristics – the metaphor exposed”
Population based heuristics

At each iteration

- a *set* \(^3\) of solutions (population) is maintained
- some solutions are *recombined* \(^4\) to obtain new solutions (among which a better one, hopefully)

Several paradigms (often just the metaphor changes!\(^5\))

- Evolutionary Computation (Genetic algorithms)
- Scatter Search and path relinking
- Ant Colony Optimization
- Swarm Optimization
- etc.

General purpose (soft computing), easy to implement (rather than effective!)

---

\(^3\) In trajectory/based metaheuristics, a single

\(^4\) In trajectory/based metaheuristics, perturbation, move

\(^5\) K. Sörensen, “Metaheuristics – the metaphor exposed”
Genetic Algorithms [Holland, 1975]

Metaphore: biological evolution as an optimization process:

\[
\begin{align*}
\text{Survival of the fittest} & \iff \text{Optimization} \\
\text{Individual} & \iff \text{Solution} \\
\text{Chromosome} & \iff \text{Encoding} \\
\text{Fitness} & \iff \text{Objective function}
\end{align*}
\]

* Encode solutions of the specific problem.*

Create an initial set of solutions (*initial population*).

Repeat

* Select* pairs (or groups) of solutions (parent).

* Recombine* parents to generate new solutions (offspring).

Evaluate the *fitness* of the new solutions

* Replace* the population, using the new solutions.

Until (*stopping criterion*)

* Return* the best generated solution.

* Genetic Operators
Genetic Algorithms [Hollande, 1975]

Metaphore: biological evolution as an optimization process:

\[
\begin{align*}
\text{Survival of the fittest} & \iff \text{Optimization} \\
\text{Individual} & \iff \text{Solution} \\
\text{Chromosome} & \iff \text{Encoding} \\
\text{Fitness} & \iff \text{Objective function}
\end{align*}
\]

* Encode solutions of the specific problem.*

Create an initial set of solutions (*initial population*).

**Repeat**

- *Select* pairs (or groups) of solutions (parent).
- *Recombine* parents to generate new solutions (offspring).
- Evaluate the *fitness* of the new solutions
- *Replace* the population, using the new solutions.

**Until** (*stopping criterion*)

**Return** the best generated solution.

* Genetic Operators
Encoding: *chromosome*, sequence of *genes*

- **KP 0/1**: binary vector, \( n \) genes = 0 / 1
  
  |   | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |

- **TSP**: path representation: \( n \) genes = cities
  
  | 3 | 2 | 6 | 1 | 8 | 0 | 4 | 7 | 1 | 5 |

- Normally, each gene is related to one of the decision variables of the Combinatorial Optimization Problem (COP)

- Encoding is important and affects following design steps (like solution representation in neighbourhood search)

- **Decoding** to transform a chromosome (or individual) into a solution of the COP (in the cases above it is straightforward)
Encoding: *chromosome*, sequence of *genes*

- **KP 0/1**: binary vector, \( n \) genes = 0 / 1
  
  \[
  \begin{array}{cccccccccc}
  1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
  \end{array}
  \]

- **TSP**: path representation: \( n \) genes = cities
  
  \[
  \begin{array}{cccccccccc}
  3 & 2 & 6 & 1 & 8 & 0 & 4 & 7 & 1 & 5 \\
  \end{array}
  \]

- Normally, each gene is related to one of the decision variables of the Combinatorial Optimization Problem (COP)

- Encoding is important and affects following design steps (like solution representation in neighbourhood search)

- **Decoding** to transform a chromosome (or individual) into a solution of the COP (in the cases above it is straightforward)
Encoding: *chromosome*, sequence of *genes*

- Job shop scheduling problem instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>machine , $t_{ij}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, 5</td>
</tr>
<tr>
<td>2</td>
<td>B, 2</td>
</tr>
<tr>
<td>3</td>
<td>C, 4</td>
</tr>
<tr>
<td>4</td>
<td>C, 4</td>
</tr>
</tbody>
</table>

| 1   | B, 4                |
| 2   | A, 6                |
| 3   | B, 2                |
| 4   | A, 5                |

- Solution Encoding: $n \times m$ genes = jobs (gives priority)

```
[4 2 1 1 3 4 2 3 1 2 3 4]
```

- Solution Decoding: from job priority to actual task starting times

$\begin{align*}
    &\text{C} \\
    &\quad 4 \quad 3 \quad 1 \quad 2 \\
    &\text{B} \\
    &\quad 2 \quad 1 \quad 3 \quad 4 \\
    &\text{A} \\
    &\quad 1 \quad 4 \quad 2 \quad 3 \\
\end{align*}$

$t = 0 \quad 5 \quad 10 \quad 15 \quad 20$
Genetic operators

- **Initial population**: random + *some* heuristic/local search
  - random → initial diversification (very important!!!)

  - heuristic (randomized) → faster convergence (not too many heuristic solutions, otherwise fast convergence to local optimum)

  - Remark: in population based heuristics, a **local optimum** does not correspond to a single solution, but to a population made of identical (or very similar) individuals, i.e., loss of population diversity such that recombination is not able to generate improving individuals

- **Fitness**: (variants of the) objective function (see Neighbourhood Search)
Genetic operators: Selection

- **Selection**: larger fitness $\xrightarrow{\sim} \text{larger probability}$ to be selected
- Notice: even worse individual should be selected with small probability to (avoid premature convergence!): they may contain good features (genes), even if their overall fitness is poor
- Mode 1: select one $t$-uple of individuals to be combined at a time
- Mode 2: select a subset of individuals to form a *mating pool*, and combine all the individual in the mating pool.
Genetic operators: Selection schemes

- $p_i$: probability of selecting individual $i$; $f_i$: fitness of $i$

In general, compute $p_i$ such that the higher $f_i$, the higher $p_i$

- **Montecarlo**: $p_i$ is proportional to $f_i$

$$p_i = f_i / \sum_{k=1}^{N} f_k \quad f_i: \text{fitness of } i$$

Super-individuals may be selected too often

- **Linear ranking**: sort individual by increasing fitness and $\sigma_i$ is the position of $i$, set $p_i = \frac{2\sigma_i}{N(N+1)} \quad [ = \text{constant} \cdot \sigma_i \text{ (linear in } \sigma_i)]$

- **n-tournament**: in order to select one individual, first select a small subset of $n$ individuals uniformly in the population, then select the best individual in the subset
Genetic operators: recombination [crossover]

- From $n \geq 1$ parents, obtain $m$ offspring **different but similar**
- offspring inherits genes (features) from one of the parents at random

**Uniform (probability normally depends on the parent fitness)**

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

parent 1 (fitness 8)

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

parent 2 (fitness 5)

offspring

**$k$-cut-point: “adjacent genes represents correlated features”**

|   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|
| * | * | * | * | * | * | * |
| + | + | + | + | + | + | + |
| * | * | * | + | + | + | + |
| + | + | + | * | * | * | * |

parent 1

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>+</td>
</tr>
</tbody>
</table>

parent 2

offspring 1

offspring 2
Mutation

After or during crossover, some genes are randomly changed

- **Mutation is primarily intended to avoid genetic drift**: statistical arguments show that a single gene tends to take the same value in all the individuals of the population, which implies loss of genetic diversity (loss of diversity in a single gene)
  - Even if individuals may be different from each other according to other genes (population diversity is preserved, e.g., thanks to the other genetic operators), one gene is the same for every individual (genetic drift): e.g., in KP/0-1, we have different solutions in the population, but all of them include item ’4’

- Mutation’s effects and side effects (sometimes we want them!):
  - (re)introduce genetic diversity (＝ diversity in each gene)
  - slow population convergence (for a good trade-off, normally we change very few genes with very small probability)
  - can be used to obtain, as a side effect, chromosome diversity (i.e. diversification, diversity among individuals), if more genes with larger probability undergo mutation (simple way to diversify the population, often not the best one)
Integrating Local Search

**Local search** may be used to improve offspring (simulate children education)

- Replace an individual with the related local minimum
- May lead to premature convergence
- Efficiency may degrade! Suggestions:
  - use simple and fast LS
  - apply to a selected subset of individuals
  - more sophisticated NS only at the end, as post-optimization
Crossover, mutation and non-feasible offspring

Crossover/mutation operators may generate unfeasible offspring. We can:

- Reject unfeasible offspring
- Penalize (modified fitness)
- Repair (during the decoding)
- Design specific operators guaranteeing feasibility. E.g. for TSP:
  - **Order crossover** (provides similar offspring because reciprocal order is maintained for most pairs)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>9</th>
<th>2</th>
<th>6</th>
<th>8</th>
<th>3</th>
<th>0</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>parent 1</th>
<th>parent 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>offspring 1</td>
<td>offspring 2</td>
</tr>
</tbody>
</table>

- Mutation by substring reversal (\(\approx\) 2-opt)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>9</th>
<th>2</th>
<th>6</th>
<th>8</th>
<th>3</th>
<th>0</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

\[\begin{array}{c}
1 & 4 & 9 & 2 & 6 & 8 & 3 & 0 & 5 & 7 \\
\end{array}\]

\[\begin{array}{c}
1 & 4 & 8 & 6 & 2 & 9 & 3 & 0 & 5 & 7 \\
\end{array}\]
Generational Replacement

**Generational replacement**: old individuals are replaced by offspring

- **Steady state**: a few individuals (likely the *worst* ones) are replaced
- **Elitism**: a few individuals (likely the *best* ones) are kept
- **Best individuals**: generate $R$ new individuals from $N$ old ones; keep the best $N$ among the $N + R$

**Population management**: keep the population diversified, whilst obtaining (at least one) better and better solution

- Acceptance criteria for new individuals (e.g. fitness)
- Diversity threshold (e.g. Hamming distance)
- Variable threshold to alternate *intensification* and *diversification*
Stopping criteria

- Time limit
- Number of (not improving) iterations (=generations)
- Population convergence: all individuals are similar to each other (pathology: not well designed or calibrated)
Observations

- Advantages: general, robust, adaptability (just an encoding and a fitness function!)
- Disadvantages: many parameters! (you may save time in developing the code but spend it in calibration)
- Overstatement: *complexity comes back to the user*, that should find the optimal combination of the parameters. Normally, the designer should provide the user with a method able to directly find the optimal combination of decision variables. In fact, the algorithm designer should also provide the user with the parameter calibration!

- Genetic algorithms are in the class of *weak methods or soft computing* (exploit little or no knowledge of the specific problem)
Validating optimization algorithms

Some criteria:
- (Design and implementation time / cost)
- Efficiency (running times)
- Effectiveness (quality of the provided solutions)
- *Reliability*, if stochastic (every run provides a good solution)

Evaluation/validation techniques:

- **Computational experiments.** Steps
  - designing and implementation of the optimization algorithm
  - benchmark selection (real, literature, ad-hoc): “many” instances
  - parameter calibration (before -not during- test)*
  - test (notice: multiple [e.g. 10] running if stochastic)*
  - statistics (including reliability) and comparison with alternative*

- Probabilistic analysis (more theoretical, e.g. probability of optimum)
- Worst case analysis (performance guarantee, often too pessimistic)

*see lab example *(tabu tenure calibration, tests with multiple runs, statistics and results)*
Parameter calibration (or estimation)

- **Pre-deployment** activity (designer should do, not the user!)
- Estimation valid for every instance (for evaluation purposes)
- Standard technique:
  - select an instance **subset** (= training set)
  - extensive runs on the training set
  - take **interaction** among parameters into account
  - stochastic components make the calibration harder
- Advanced techniques:
  - Black box optimization
  - Automatic estimation (e.g. *i-race* package, off-line application of machine learning techniques)
  - Adaptivity: parameters are changed at running time, following the search history (e.g., adjusting tabu tenure by cycle-checking, “on-line” application of machine learning techniques)
Warning: metaheuristic principles vs. metaphores

Many (good) metaheuristics are inspired by (good) metaphores

Recent literature proposed a true tsunami of “novel” metaheuristic methods, most of them based on a metaphor of some natural or man-made process: the behavior of any species (bees, wasps, monkeys, apes, birds etc.), the flow of water, musicians playing together etc.

Actually, the basic principles are often not novel, but the same as for trajectory or population based methods

Good or new metaphores do not necessarily lead to good or new metaheuristics!

Golden Rule

An algorithm is good if it provides good results (validation!), and not if it is described by a suggestive metaphor. See Sörensen, 2015
Hybrid metaheuristics: very brief introduction!

Integration between different techniques, at different levels (components, concepts, etc.). Examples:

- population based + trajectory methods (find good regions + intensification)
- tabu search + simulated annealing
- **Matheuristics** (hot research topic, thesis available!)
  - mathematical programming driven constructive heuristics
  - exact methods to find the best move in large neighbourhoods
  - heuristics to help exact methods (e.g. primal and dual bounds)
  - Rounding heuristics, fixing heuristics
  - Local branching
  - ...

- **Data driven optimization** (hot research topic, thesis available!)
  - Machine Learning to set optimization model parameters
  - Artificial Intelligence to detect or learn promising regions or search directions (e.g., ML-driven granular search, ML-driven kernel search)
  - ...

- ...

Luigi De Giovanni
Heuristics for Combinatorial Optimization

65 / 66
Ideas from sample applications [see proposed readings]

Two-level local search heuristic for pickup/delivery problems in express freight trucking
- Neighbor solution evaluation is difficult: second level local search heuristic
- Tabu Search (intensification) + Variable Neighborhood Search (diversification)
- Randomization (further diversification)
- efficiency: granular exploration + parallel implementation + fast route sequencing

Data-driven matheuristic for the Air Traffic Flow Management Problem
- Takes advantage from data repositories on historically flown trajectories
- Specific Integer Programming formulation including user preferences and predefined routes
- Model components (routes and preference parameters) determined through Data Analytics (cluster analysis, tree classifiers)
- Granular exploration of very large neighborhoods through Integer Programming and Data Analytics (good move classifiers)

Evolving Neural Networks Through Augmenting Topologies
- Evolutionary algorithm, crossover as “union” of nodes and connections
- Mutation operators obtained by neighborhood moves (+/- node; +/- connection; change weight)
- Independent evolution and management of “species” (subsets of similar solutions)