Erlang

An introduction

Paolo Baldan
Languages for Concurrency and Distribution

Erlang, In a slogan

Declarative (functional) language tor concurrent and
distributed fault-tolerant systems

Erlang

Functions + Concurrency + Messages

BasICcS

Dynamic typing
Light-weight processes

Total separation between processes (no sharing,
naturally enforced by functional style)

(Fast) Message passing

- Transparent distribution

Where does it come from®?

* Old language with modern design
* Created in ‘86 at Ericsson
 Open sourced in '98
* "Programming with Erlang” published in ‘07

e (Getting more and more popular ... also in
different incarnations (cfr. Elixir)

INntended domain

Highly concurrent and distributed (hundreds of thousands
of parallel activities)

(Soft) real time
Complex software (million of lines of code)

High Availability (down times of minutes/year — never
down)

Continuous operation (years)

Continuous evolution / In service upgrade

Principles

Concurrent

programming Functional

programming

/

Scalability

Concurrency
Oriented
programming

Fault
tolerance

Fault tolerance

 Jo make a system fault tolerant you need at least ...

* two computers (and some form of coordination)

OO

e |f one crashes, the other takes over

Fault tolerance

* To make a system very fault tolerant you need (at
least) ...

©e%:% @

 Which also addresses scalability

Concurrency

Distribution .
faces of the same coin

Fault tolerance (inseparable)

Scalability

Models of concurrency

- Shared memory

* Threads

* Mutexes and locks
- Message passing
* Processes

* Messages

Shared Memory

* Problems:

e \WWhat if a thread fails in the critical section?”

corrupted shared memory

2

 Where do we (physically) locate the shared
memory for distributed systems”

Message passing
Concurrency

* No sharing (share by communicating)
* No locks, mutexes etc

* (Lots of) processes (tfault tolerant, scalable)
communicating via pure message passing

Concurrency oriented
programming

* [he world Is parallel and distributed

* The observation of the concurrency patterns and
message channels as a way of designing an
application

* Concurrency seen as a structuring paradigm
(without being shy at creating processes)

Concurrency oriented programming (COP)

Message from ...

"My first message is that
concurrency
IS best regarded as a
program structuring principle’

Sir Tony Hoare
Structured Concurrent Programming

Transparent distribution

* Abstract from physical locations

AL

() Machine/node

B Process
— Message

Functional programming

* Programs are expressions,
computation is evaluation

P1 - P2 - P3 = Value
* No mutable state

e copy, not modify

e essentially no side effects

* Nothing to lock and automatic thread safety when
parallellized

Multicore (& c0.) era

* Paradigm shift in CPU architecture

* Multi core
(easily up to 8 cores)

 GPU - Graphical Processing Unit

« NOC - Network on chip
(up to 80 and more cores)

HOpPE

* Language and programming style exploiting
parallelism

* ldeally: Make my program run N times faster on
an N core CPU with

* NO changes to the program
* NO pain and suffering

e Can we have this? Somehow ...

crlang basics

Erlang

Functional
dynamic(ally typed)
garbage collected
eager

compiled to Erlang runtime (BEAM instance)

Shell

 Can play most tricks in the shell!

Erlang/OTP 26 [erts-14.2.5] [source] [64-bit]
[smp:8:8] [ds:8:8:10] [async-threads:1] [Jit] [dtrace]

Eshell V14.2.5 (press Ctrl+G to abort, type help().
for help)
1> help().

EXpression

* Jerminated with a period, evaluate to a value

1> 2 + 15.
17

2> 15 div 2.
7

3> 2#101010.
42

4> 16#AE.
174

Variables

e Start with capital letter
 Once "assigned’, a variable is immutable

¢ "="|s pattern matching
Compare (and possibly instantiate vars in the |hs)

1> Two = 2.
2

2> Two = 2.
2

3> Two = 3.
** exception error: no match of right hand side wvalue 3

Moaules

 Programs are organised in modules

-module (myMath).
-export([fac/1l]).

fac(0) ->
L;
fac(N) ->

N * fac(N-1).

fac(5) - 5*fac(5-1) - 5*fac(4)
-» S5*4*fac(4-1) - ...

Moaules

e Some functions are exported, some others are not

= (myMath) .
- ([fac/1]).

add(Xx,0) -> X;
add(X,Y) -> add(X,¥Y-1)+1.

mul(X,0) -> 0;
mul(X,Y) -> add(mul(X,Y-1),X).

fac(0) -> 1;
fac(N) -> mul(N, fac(N-1)).

Compilation

A module can be compiled (and loaded)

1> c(myMath).
{ok,myMath}

e And used ...

2> myMath:fac(5).
120
3> myMath:fac(7).
5040

Besides Integers

e Atoms: constants with their own name for value

1> my atom.
my atom

2> new atom.
new atom

- Booleans

false
2> false or true.
true

true

1> true and false.

4> not false.
true
5> not (true and true).

false

3> true xor false.

andalso / orelse
Lazy versions

Tuples

e Syntax {compl, compZ2, comp3}

1> X
4

10, ¥ = 4.

2> Point = {X,Y}.
{10,4}

3> {First, } = Point.
110,4}

4> First.
10.

lagged luples

e Juples can be tagged for identitying their structure

1> P = {point,{10,5}}.
{point, {10,5}}

2> CP = {colpoint, {{10,5},red}}.
{colpoint, {{10,5},red}}

3> {colpoint, Val} =P
** exception error: no match of right hand side
value {point,{10,5}}

4> {colpoint, Val} = CP
{colpoint, {{10,5},red}

5> Val.
{{10,5},red}

lemperature converter

 femperatures denoted by pairs {Unit, Value}
where Unit can be c(elsius), or f(ahrenheit)

- (conv).
- ([convert/1]).

convert({c, X}) ->

{f, 1.8 * X + 32};
convert({f, X}) ->

{c, (X-32)/ 1.8}.

lemperature converter

2> conv:convert({f,100}).
{c,37.8}

3> conv:convert({c,100}).
{£,212.0}

4> conv:convert({k,2}).
** exception error: no function clause matching ..)

lemperature converter,
Reprise

- (conv).
- ([convert/1]).

convert({c, X}) ->

{f, 1.8 * X + 32};
convert({f, X}) ->

{c, (X-32)/ 1.8}
convert() ->

error.

| IStS

« Syntax [elem1, elem2, elem3,]

* Any type of element

1> 11, 2, 3, {numbers,[4,5,6]}, 5.34, atom].
[1,2,3,{numbers,[4,5,6]},5.34,atom]

e Head and tall

11> hd([1,2,3,4]).
1

12> +t1([1,2,3,4]).
[2,3,4]

Head/Tail, with matching

15> [Head | Tail] = [1,2,3,4].
[1,2,3,4]

16> Head.
1

17> Tail.
[2,3,4]

18> [NewHead | NewTail] = Tail.
[2,3,4]

19> NewHead.
2

Lengtn

len([]) ->
0;

len([_|T]) ->
l+len(T).

 \With tail recursion

% lentr(L, N)
lentr([],N) ->
N;
lentr([_|T],N) ->
lentr(T,N+1).

lentr (L) ->
lentr(L,0).

More list ops

e Concatenation, subtraction

5> [1,2,3] ++ [4,5].
[1,2,3,4,5]

6> [1,2,3,4,5] -- [1,2,3].
[4,5]
7> [2,4,2] -- [2,4].

[2]

8> [2,4,2] -- [2,4,2].
[]

Comprehension

* Doubling

1> [2*N || N <- [1,2,3,4]].
[2,4,6,8]

e Getthe even

2> [X || X <-11,2,3,4,5,6,7,8,9,10], X rem 2 =:
[2,4,6,8,10]

0].

e Sum

5> [X+Y || X <- [1,2], ¥ <- [2,3]1].
[3I4I4l5]

Quicksort

-module(quicksort).
-export([gsort/1, trigsort/1l]).

gsort([]) —->
[17

gsort([Pivot|Rest]) ->
gsort([X || X <- Rest, X < Pivot])
++ [Pivot]
++ gsort([Y || Y <- Rest, Y >= Pivot]).

volid QuickSort(int 1list|[], int beg, int end)

{
int piv; int tmp;
int 1,r,p’

while (beg < end)

{

l =beg; p= (beg + end) / 2; r = end;

piv = list[p]l:

while (.)

{
while ((1 <= r) && ((list[l] - piv) <= 0)) 1++;
while ((1 <= rxr) && ((list[xr] - piv) > C)) x—-:
if (1 > r) break:;
tmp = list[l]; list[l] = 1list[r]:; list[r] = tmp’
if (p==r) p=1l:;
1+H: r——;

}

list([p] = 1list([r]:; 1list[r] = piv;

r——7

if ((r - beg) < (end - 1))

{
QuickSort(list, beqg, r):
beg = 1;

}

else

{
QuickSort(list, 1, end):
end = r;

}

}

f

e Sugar for (conditional) pattern matching

test(X,Y) ->
if
X <Y -> =1
X ==Y -> 0;
X > Y -> 1
end.

test(X,Y) when X < Y ->
~1:

test(X,X) ->
07

test(X,Y) when X > Y ->
1.

Case

e Sugar for (conditional) pattern matching

insert(X,Set) ->
case lists:member (X,Set) of
true -> Set;
false -> [X|Set]
end.

Types”

- Dynamically typed
* Types inferred runtime (type errors are possible)
* Type test functions

is_atom/1, is_binary/1, is_bitstring/1, is_boolean/1

* Type conversion functions

atom_to_list/1, list_to_atom/1, integer_to_list/1 ...

Higher-order

e Functions are first class values

1> Double = fun(X) -> X * 2 end.
#Fun<erl eval.6.54118792>

2> Double(3).

6.

* Profitably used as function arguments

Map, filter ...

* Apply to all elements of a list

map (Fun, [First|Rest]) -> [Fun(First)|map(Fun,Rest)];
map(Fun, []) -> [].

* Filter only elements satistying a predicate

filter(Pred, L)

filter(_, [1) -> [1;
filter(Pred, [H|T]) ->
case Pred(H) of
true -> [H|filter(Pred, T)];
false -> filter(Pred, T)
end.

Example

 Convert a list of temperatures

2> Fun fun(X) ->
{City,Temp} = X,

{City,conv:convert (Temp)} end.

3> map(Fun, Temps)

1> Temps = [{"Milan", {c,10}}, {"Turin", {c,12}},...

4> [{"Milan",{f,50.0}},{"Turin”,{£f,53.6}}, ...]

Example

 Keep only warm temperatures

2> Pred = fun(X) ->
{City,{c,Temp}} = X,
Temp >= 12 end.

3> filter(Fun, Temps)

1> Temps = [{"Milan", {c,10}}, {"Turin", {c,12}}, ..

4> [{"Turin", {c,12}}, ..]

crlang:
Concurrency

Processes

Basic structuring concept for concurrency
(everything is a process)

Execute a function on some parameters
Strongly isolated (no sharing)

|[dentified by an identifier (id or name), that can be
passed (and cannot be forged)

Messages

Processes communicate through asynchronous
message passing (with known companions)

Messages are atomic (delivered or not)

Messages are sent to a process and kept in a
message queue (the mailbox)

A process can be informed about the status of
other processes (detect a failure)

(General structure

* Processes typically sit in an infinite loop
* get a message
* process the message

e start over

 The malilbox can be accessed selectively

Actor model

 Everything is an actor and actors execute concurrently

e Actors can

* send messages to other actors, asynchronously
(mailing);

* designate the behaviour for the messages received
* create new actors;

 An actor can communicate only with actors whose
address Is known, and addresses can be passed

Creating processes

spawn (Module, Exported Function, Arg List)

* Create a new process executing
e a function
e exported by some module
* on a list of arguments

* Returns a pid, uniguely identifying the process

TIck

-module(tick).
-export([start/0, tick/2]).

tick(Msg, 0) ->
done;

tick(Msg, N) ->
10:format(“Here 1s tick saying \"~p\" ~B times~n”,
[Msg,N1),
tick(Msg, N - 1).

start() ->
spawn(tick, tick, [yup, 3]),
spawn(tick, tick, [yap, 2]).

Tick tock ... run

7> tick:start().

Here 1s tick saying "yup" 3 times
Here 1s tick saying "yap" 2 times
Here 1s tick saying "yup" 2 times
Here 1s tick saying "yap" 1 times
Here 1s tick saying "yup" 1 times

8>

-ast spawning

e Lightweight (not 1-1 with system threads)

Process creation times (LOG-/LOG scale)

1888 - T r——r—r—r—rr-y v v —r——r—rery T - T

. ‘clzspawr twt? ——

w 100 | .

W []
@
o
o
Q
Y
"
o
-
o
Q
@
]
o
L.
o
.

& 18 | -

A
{
f
1 A A PR W S | A A —dda A A PR T W S | A " PR ST T
16 166 16606 166606 1660684

Number of processes

-ast spawning

« Goroutines: Managed by the runtime, lightweight threads
multiplexed over a number of system threads (green threads)

 Erlang processes: managed by the Beam VM, multiplexed over a
thread pool, no shared memory (green processes)

e Java:

« Java Threads are (although not defined by the specification)
platform threads, heavy (1Mb memory footprint)

e Java Virtual Threads (since Java 21), lightweight threads,
multiplexed over a thread pool, shared memory very similar to
goroutines, but possibly heavier

Communication

Asynchronous message passing

Messages are valid Erlang terms (lists, tuples,
integers, atoms, pids, ...)

Each process has a message queue
A message can be sent to a process (non blocking)

A process can selectively receive messages on its
queue (blocking)

Send and recelve

- Send
pid ! msg
- Receive
receive
msg patternl ->
actionl;
msg patternz2 ->

action2;

end

Multiplier: server

= (mulServer).
- ([start/0, mul server/0]).

mul server() ->
receive
{X, Y, pid} ->
Pid ! X*Y,

mul server();

stop ->
io:format("Server stopping ... ", [])
end.

Multiplier: server
(concurrent)

= (mulServerConc).
- ([start/0, mul server/0]).

mul server() ->
receive
{X, Y, Pid} ->
spawn(fun() -> Pid ! X*Y end.),
mul server();

stop ->
io:format("Server stopping ...
end.

o [1)

Multiplier: client

start() ->

Server = spawn(proc2, mul server, []),
Server ! {2, 2, self()},
|

Server {2, 4, self()},
receive
Pl ->
io:format ("Product 2*2 = ~-B~n", [P1l])
end,
receive
P2 ->
io:format("Product 2*4 = ~B~n", [P2])
end,

Server!stop.

Problems

Recelve for concurrent server can be out of order

What if we want different binary operations (e.g.,
sum and product)

Messages not of the right format are kept in the
mallbox

Everyone knowing the server can shut it down

The Client could wait for the answer indefinitely

MultiplierAdder: server

- (mulAddServer).
& messages are of the kind {Op, X, Y, Pid}
mul add server() ->
receive
{mul, X, Y, Pid} ->
spawn(fun() -> Pid ! X*Y.),
mul add server();

{add, X, Y, Pid} ->
spawn(fun() -> Pid ! X+Y.),
mul add server();

stop ->
io:format ("Server stopping ...", [])
end.

mulAddSever.erl

Careful with the mailbox

 What if the server gets wrongly formatted
messages”?

However, as messages not matched by receive are left in the
mailbox, it is the programmer's responsibility to make sure
that the system does not fill up with such messages.

* Do something with unmatched messages

* Try to avoid unmatched messages offering a
communication interface

Process unmatched
messages

-module (mulAddServer).
¢ messages are of the kind {Op, X, Y, Pid}
mul add server() ->
receive
{mul, X, Y, Pid} -> .. ;
{add, X, Y, Pid} -> .. ;
stop -> .. ;

M -> do st. with message M (e.g., log error)
end.

mulAddSeverl.erl

Offer an interface

-module (mulAddServer).

mul (Server, X,Y) ->
Server ! {mul, X, Y, self()}.

add (Server, X,Y) ->
Server ! {add, X, Y, self()}.

mul add server() ->
receive
{mul, X, Y, Pid} -> .. ;
{add, X, Y, Pid} -> .. ;
stop -> .. ;
end.

mulAddSever?.erl

Registering

* Processes can be registered

register(Alias, Pid)

e Usetul for restarting behaviours (node visibility)

* Alias can be unregistered (done automatically
when aliased process dies)

unregister(Alias)

Timing out

e A receive can be exited after some time:

receive
Msgl ->
actionl;
Msg2 ->
action?

after Time ->
action after timeout

 Example

Multiplier, again
The server (mul_server) is registered (as
‘multiplier’)
Accessible to clients knowing the name

The server can be stopped ‘only by the creator’
(secret = creator pid ... not very secret)

The client sends and gets 'signed’ messages and
possibly timeouts if answer takes too long.

mulServerReg.erl

Multiplier, again

* The server (mul_server) is registered (as
multiplier) when started

start() ->
Server = spawn(mulServerReg, mul server, [self()]),
register(multiplier, Server),

e Known asmultiplier inthe node

* Pid of the creator is passed to the server, to be kept
INn the “server state”

Server

mul server(Creator) ->

receive
2 mul message: provide answer 'signed'
g with an id
{1d, Pid, X, Y} ->

end.

spawn(fun() -> Pid ! {Id, X*Y} end),
mul server(Creator);

3 stop message (only by creator)
{Creator, stop} ->
io:format("Server stopping ...-n", []);

% stop message, not from creator
{Pid, stop} ->
io:format ("Process \"~w\" not allowed

to stop ...-n", [Pi1id]),
mul server(Creator)

Client

client (

o)

Id1l

) =>

& first message

= crypto:strong rand bytes(5),

Msgl = {Idl, self(), 2, 2},
multiplier ! Msgl,

receive

{Idl,Pl} ->
out result(Msgl,Pl)

after

end

10 ->
out result(Msgl,fail)

’

multiplier ! {self(), stop },

Robustness

e Abnormal termination is normal: "Let it crash"
philosophy

* Primitives allows to “link” processes in a way that
processes in the same group are notitied of
abnormal (error) events

* The structuring can be hierarchical allowing for
layered applications: workers, controllers,
SUPErvIsSors

L INKS and monitors

* A process can be linked to or monitor another
Process

A process can exit

* normally
run out of code or ex1t(nhormal)

* abnormally
error or ex1t(Reason)

| INKS

» (Bidirectional) link between caller and pid

link (Pid)

 When a process exits, linked processes receive a
signal, carrying pid and exit reason

* By default
e normal exits

e abnormal exits

ignored

Kill the recelving process.

propagate the error signal to the
inks of the killed process

L INKS, more control

A process can become a supervisor process
(also called system process)

process_flag(trap_exit, true).

* [he exit signal is caught as a message

{"EXIT',P1d, Reason}

L INKS, more control

 £.g.,inthe process start (see before)

start() ->
process flag(trap exit, true),

Server = spawn(mulServerReg, mul server, [self()]),
link(Server),

register(multiplier, Server),

receive
{ ' EXIT', Server, Reason} ->

depending on reason, possibly
restart the server

3
3

Example

A server that gets messages consisting of a
function and its arguments

Execute the function on the arguments as a
“supervised” servant, keeping a list of the
unfinished tasks

For each servant, get the result and provides it to
the corresponding client.

In case of abnormal exit of the servant, retry

hierarchy.erl

Example: servant

Given a function and some arguments

- executes the functions on the arguments
- or randomly fails (75% of the times)
servant (F, Args, Server) ->

case rand:uniform(4) of

o°® o° o©

regular execution, notify the server
providing the result
->

Server ! {answ, {self(), F(Args)}};

= o9 o©

failure
->
exit(went wrong)

o©

end.

Example: server

The server keeps 1n 1ts state

— Creator: the pid of the creator

- WaitingList: list of requests being processed of
the kind {Servant,Client,F,Args} including
Servant's pid, client's pid, request data

o0 00 0P o9 o©

server (Creator, WaitingList) ->

% Supervisor process: traps the exit signals
process flag(trap exit, true),

receive

(1) client request

(2) normal termination from servant
(3) error message from servant

(4) stop request from creator

(5) stop request from non creator

o©

o0 o° o o©

)
=
Q.

Example: server

$ (1) client request
{req, {Client, F, Args}} ->

% spawn and link at the same time (atomic)
Servant = spawn_link(hierarchy, servant, [F, Args, self()]),
server (Creator, [{Servant,Client,F,Args} | WaitingList]);

$ (2) normal termination from servant
{answ, {Servant, Result}} ->

{ ,Client,F,Args} = lists:keyfind(Servant,1l,WaitingList),
Client ! {answ, {Client, F,Args}, Result},
server (Creator, WaitingList--[{Servant,Client,F,Args}]);

Example: server

% (3) error message from servant
{ EXIT', Servant, went wrong } ->

{ ,Client,F,Args} = lists:keyfind(Servant,1l,WaitingList),

io:format("Servant ~w went wrong, retrying ...~n", [Servant]),
NewServant = spawn link(hierarchy, servant, [F, Args, self()]),
server (Creator, (WaitingList--[{Servant,Client,F,Args}])

++ [{NewServant,Client,F,Args}]);

4

(©)

% (4) stop request from creator

{Creator, stop} ->

io: format("Server stopping ...~n", []),
exit(normal) ;

()

% (5) stop request not from creator

{Pid, stop} ->

io:format ("Process \"~w\" not allowed ...~n", [Pid]),
server (Creator,WaitingList)

Example: creator

start() ->

% create and register the the server
Server = spawn(hierarchy, server, [self(),[11),
register (pserver, Server),

% accessible to some client, without getting the pid
spawn (hierarchy, client, []),

$ walt a bit and stops the server
timer:sleep(1000),
pserver ! {self(),stop}.

Example: client

client() ->

(®)

$ first message
Msgl = {self(), fun([X,Y]) -> X*Y end, [1,2]},
pserver ! {req, Msgl},
% wait for result, possibly timing out
receive
{answ, Msgl, R1l} ->

out result(product,R1l)

after
10 ->

out result (product,fail)

end,

Exerclse

* Modify the system as follows:
 [he server creates a servant for each request

e |n case of normal termination, the servant itselt
send the result to the client

e |n case of abnormal termination of the servant,
the server Is notified and a new servant Is

created

Monitors

* Create a “unidirectional” link:
current process monitors the process Pid

monitor(process, Pid)

* On exits the monitor process gets a message

{'DOWN', MonitorReference, process, Pid, Reason}

Distribution

- Distributed Erlang

* Processes run in various Erlang nodes, same intranode
primitives

* Applications running in a distributed trusted environment
(cluster)

- Socket-based distribution

e TCP/IP sockets to communicate in an untrusted environment

e |ess flexibile, but more secure

Distributed Erlang

e Actors are spread on different nodes

* Node A can communicate with Node B if they
share a cookie (magic cookie) and know each
other name

e Start a node (with cookie)

er]l -sname name —setcookie cookie % same host
er]l -name name@host -setcookie cookie £ across hosts

Connections

* Node in Erlang are loosely connected

 Connecting nodes

net_kernel :connect_node(NodeName)

Also implicitly established at first connection attempt

e Connections are transitive

* |t a node goes down, all connections to it are
removed.

Connections

er]l -sname nodel@host -setcookie "a

erl -sname node2@host -setcookie "a

erl -sname node3@host -setcookie "a

nodel> nodes().

[]

nodel> net kernel:connect node(node2@host’).
True

nodel> nodes().
['node2@host ']

node2> net kernel:connect node(node3@host').
True

nodel> nodes().
['node2@host’', 'node3@host']

Distriouting

e Lifting to the cluster level works reasonably smoothly

e primitives like spawn, link, monitor etc. has
additional node parameter, e.g.

spawn(Node, Module, Exported_Function, Arg List)

e registered names are local to nodes, hence pid
must be used (or see global module)

* when spawning a process at a node, the code must
be avallable at that node

Example

* [he previous example, of a server getting a list of
tasks to execute moditied as follows:

e client, server and slaves on different nodes

e the server monitors the slaves, on fail it retries on
a (possibly) different node

distributed.erl

Example: server

The server keeps 1n 1ts state

— Creator: the pid of the creator

WaitingList: list of requests being processed of

the kind {Servant,Client,F,Args} including

Servant's pid, client's pid, request data

Slaves: list of slave nodes, first in the list 1is
next to use, and then reinserted as last

o0 00 00 00 o0 o© o0

server (Creator, WaitingList, Slaves) ->

% Supervisor process: traps the exit signals
process flag(trap exit, true),

Example: server

% (1) client request
{req, {Client, F, Args}} ->

% get the next slave
[Slave|SlavesRest] = Slaves,

% spawn and link at the same time (atomic)
Servant = spawn link(Slave, distributed, servant,
[F, Args, self()]),
server (Creator,
[{Servant,Client,F,Args} | WaitingList],
SlavesRest++[Slave]);

Example: server

% (3) error message from callback

{ 'EXIT', Servant, went wrong } ->
¢ get the next slave
[Slave|SlavesRest] = Slaves,

{ ,Client,F,Args} = lists:keyfind(Servant,1l,WaitingList),
NewServant = spawn link(Slave, distributed, servant,
[, Args, self()]),
server (Creator,
WaitingList--[{Servant,Client,F,Args}]
++[{NewServant,Client,F,Args}],
SlavesRest++[Slave]);

Socket-based distribution

e Standard (low level) socket interface (gen_tcp
module)

e Server: listen, accept
* Client: connect

e send, recv

Open Telecom Platform
(OTP)

e A set of design principles
A setof libraries

* Developed and used by Ericsson to build large-
scale, fault-tolerant, distributed applications with
pore-designed skeletons and patterns (server, fsm,
event ...)

gen_server

Need to implement a number of callbacks

init (set up, initialise the state)

handle cast (asynchronous call without a reply,
determining a state change)

handle call (synchronous call with a reply)

terminate

Example

* Multiplier realised with gen_server

mulGenServer.erl

-module (mulGenServer).

% declare that the gen server behaviour is implemented
-behaviour (gen server).

-export([go/0,client/0]).

-export ([start/0, mul/2, stop/0]).

—export ([init/1, handle call/3, handle cast/2,
handle info/2, terminate/2]).

3% INTERFACE

Create the server, registered locally as multiplier, calling init
with parameter self() (the pid of the creator)
start() ->

gen_server:start({local, multiplier}, ?MODULE, [self()]1, [])-.

o)

& multiplication: synchronous call
mul(X,Y) ->

gen server:call(multiplier, {mul, X, Y}).

stop request, asynchronous call passing the pid of the caller

(better implemented as terminate message, just to have an example of
cast)

stop() ->
gen_server:cast(multiplier, {stop, self()}).

o0 o o©

8% CALLBACKS

o)

$ i1nitialization: establish the initial state
init([Creator]) ->

{ok, [Creator]}.

multiplication handle

IN: message, sender, server state

OUT: reply atom, reply content, new state
handle call({mul,X,Y}, From, [Creator]) ->
{reply, X*Y, [Creator]}.

o0 o0 o©

(o)

% stop handle
handle cast({stop, From}, [Creator]) ->
if From =:= Creator ->
{stop, normal, [Creator]};
From =/= Creator ->
io:format("Invalid shutdown req (pid ~w)-n",[From]),

{noreply, [Creator]}
end.

¢ handling termination
terminate(normal, [Creator]) ->

io:format ("Server created by: ~w properly
terminated~-n", [Creator]).

% other messages

handle info(Msg, [Creator]) ->
io:format ("Unexpected message: ~p~n",[Msg]),
{noreply, [Creator]}.

Dynamic Code Loading

Built-in in Erlang

A module can exist in two variants in a system:
current and old

When a module is loaded into the system for the
first time, the code becomes ‘current’.

It then a new Instance is loaded, the previous
iInstance becomes 'old' and the new one 'current'.

Dynamic Code Loading

* [wo possible ways of referencing a function

 Name only: still refers to the old version

fund(...)

* Fully qualified: refers to the current version
code, subsequent calls refers to it

module: fun(...)

hotSwap.erl

fun(...)

—

module: fun(..)

fun(...)

~
__

— old ——
Module

Module

Example

« Controller:
* new: create new loop process, return pid

e Supervises termination of loop processes and communicate
reason

- Loop:
- ver: get version
- upd: update to new version

- stop: stop

Dynamic Code Loading

 Dangerous

* Higher-level abstractions provided in OTP

Concluding ...

e Concurrency Oriented Programming (~ actor model)
* Emphasis on

e Encapsulation with focus on computing entities (state +
reaction to messages)

* [Jransparent Distribution
e Fault tolerance (supervisor trees and let it crash philosophy)
e Scalability (multiple instances on multiple nodes)

e Continuous Operation (hot-swapping)

Not perfect
(as everything in the world)

A bit oldish/low level syntax and design choices ...
alternatives Elixir, Clojure, ...

Untyped ... (Scala, Akka)

|[dentifying communication channels with computing
entities possibly cumbersome (see msg tagging/signing)

Primitive security model (restricting access to a node /
process capabillities)

Message passing only Is good, but can be heavy when
supporting the sharing of large data sets

S

I

i

Yy
O
U
C
a
N
ma
K
e
C
O
O
|
a
S
S
S

