Master Degree in Computer Engineering

Final Exam for
Automata, Languages and Computation

January 26th, 2022

1. [5 points] Let E be a regular expression and let $L(E)$ be the generated language. Let R be the string reversal operator, extended to languages in the usual way. Using structural induction, construct a regular expression E^R such that $L(E^R) = (L(E))^R$, and prove this relation.

Solution

The required construction can be found in Chapter 4 of the textbook, Theorem 4.11.

2. [8 points] Consider the following languages, defined over the alphabet $\Sigma = \{a, b, c\}$

$L_1 = \{w \mid w = a^p b^q c^r, p, q, r \geq 1, p = r = 2q\}$;

$L_2 = \{w \mid w = a^p b^q c^r, p, q, r \geq 1, p + r = 2q\}$.

State whether L_1 and L_2 are context-free languages, and motivate your answers.

Solution

(a) L_1 is not a context-free language. To prove this statement, we use the pumping lemma for context-free languages. Let us start by reformulating the definition of the language as $L_1 = \{w \mid w = a^{2q} b^q c^{2q}, q \geq 1\}$. Let N be the pumping lemma constant. We choose the string $z = a^{2N} b^N c^{2N} \in L_1$ and consider all possible factorizations $z = uvwxy$ satisfying the conditions $|v| + |x| \geq 1$ and $|vwx| \leq N$. Because of the latter condition, we have that vx can contain occurrences of at most two symbols from Σ, and these two symbols can be either a and b or else b and c, but not a and c. We separately discuss all possible cases in what follows.

- If vx contains at most one symbol X from Σ, the string uv^kwx^ky with $k = 0$ will not belong to L_1, because there will be some mismatch in the length of the three blocks of a's, b's and c's.

- If v contains only X and y contains only Y, X and Y from Σ such that $X \neq Y$, then there must be a symbol $Z \in \Sigma$ such that Z does not occur in v and in x. Again, the string uv^kwx^ky with $k = 0$ will not belong to L_1, because there will be some mismatch in the length of the three blocks.

- If v contains two (distinguishable) symbols X and Y from Σ, it is easy to see that any string uv^kwx^ky with $k \geq 2$ will not belong to L_1, because of alternating occurrences of X and Y.

A similar argument holds if x contains two symbol from Σ.

We thus conclude that L_1 is not a context-free language.

(b) L_2 is a context-free language. To see this, we reformulate the definition of the language as $L_2 = L'_2 \cup L''_2$, where

$L'_2 = \{w \mid w = a^p b^q c^r, p, q, r \geq 1, p = r = 2q, p \text{ is even}\}$;

$L''_2 = \{w \mid w = a^p b^q c^r, p, q, r \geq 1, p + r = 2q, p \text{ is odd}\}$.
We now define CFGs G' and G'' such that $L(G') = L'_2$ and $L(G'') = L''_2$. Our claim then follows from the closure of context-free languages under the union operator. Grammar G' is implicitly defined by the following productions:

\[
S \rightarrow S_1 S_2 \\
S_1 \rightarrow aa S_1 b \mid aab \\
S_2 \rightarrow b S_2 cc \mid bcc
\]

Grammar G'' is implicitly defined by the following productions:

\[
S \rightarrow S_1 S_2 \\
S_1 \rightarrow aa S_1 b \mid a \\
S_2 \rightarrow b S_2 cc \mid bc
\]

3. [5 points] Consider the CFG G implicitly defined by the following productions:

\[
S \rightarrow ABA \mid BAB \\
A \rightarrow aA \mid bB \\
B \rightarrow b \mid \varepsilon
\]

Perform on G the following transformations that have been specified in the textbook, in the given order. Report the CFGs obtained at each of the intermediate steps.

(a) Eliminate the ε-productions

(b) Eliminate the unary productions

(c) Eliminate the useless symbols

(d) Produce a CFG in Chomsky normal form equivalent to G.

Solution

We start by observing that $\varepsilon \notin L(G)$, therefore we can construct a new CFG in Chomsky normal form that is equivalent to G. All of the algorithms that need to be applied to the grammar G are reported in Chapter 7 of the textbook.

(a) The set of nullable variables of G is $n(G) = \{B\}$. After elimination of the ε-productions we obtain the intermediate CFG G_1

\[
S \rightarrow ABA \mid AA \mid BAB \mid AB \mid BA \mid A \\
A \rightarrow aA \mid bB \mid b \\
B \rightarrow b
\]

(b) The only unary production in G_1 is $S \rightarrow A$. Thus the set of unary pairs of G_1 is

$$u(G_1) = \{(S, A)\} \cup \{(X, X) \mid X \in \{S, A, B\}\}.$$
After elimination of the unary productions we obtain the intermediate CFG G_2

\[
S \to ABA \mid AA \mid BAB \mid AB \mid BA \mid aA \mid bB \mid b
\]

\[
A \to aA \mid bB \mid b
\]

\[
B \to b
\]

(c) All nonterminals in G_2 are reachable and generating, that is, there are no useless nonterminals in G_2. Therefore this step does not change the intermediate CFG obtained at the previous step.

(d) The construction of a CFG in Chomsky normal form from G_2 proceeds in two steps. The first step eliminates terminal symbols in the right-hand side of the productions of G_2, in case they appear along with some other symbols. To do this we introduce new nonterminal symbols C_a, C_b and produce the intermediate CFG G_3

\[
S \to ABA \mid AA \mid BAB \mid AB \mid BA \mid C_aA \mid C_bB \mid b
\]

\[
A \to C_aA \mid C_bB \mid b
\]

\[
B \to b
\]

\[
C_a \to a
\]

\[
C_b \to b
\]

The second step factorizes productions of G_3 having right-hand side of length larger than two. To do this we introduce new nonterminal symbols D, E and produce the final CFG G_4

\[
S \to AD \mid AA \mid BE \mid AB \mid BA \mid C_aA \mid C_bB \mid b
\]

\[
D \to BA
\]

\[
E \to AB
\]

\[
A \to C_aA \mid C_bB \mid b
\]

\[
B \to b
\]

\[
C_a \to a
\]

\[
C_b \to b
\]

4. [6 points] Assess whether the following statements are true or false, providing motivations for all of your answers.

(a) If L_1 and L_2 are not in CFL, then the language $L_1 \cap L_2$ cannot be in CFL.

(b) If $L_1 \cup L_2$ is a regular language, then also L_1 and L_2 are regular languages.

(c) Let Σ be some fixed alphabet and let L_i, $i \geq 1$, be finite languages over Σ. Then the language

\[
L = \bigcup_{i=1}^{\infty} L_i
\]

is always a regular language.

(d) The class \mathcal{P} of languages that can be recognized in polynomial time by a TM is closed under intersection with regular languages.
Solution

(a) False. Consider the alphabet $\Sigma = \{a, b, c\}$ and the counterexample $L_1 = \{a^n b^n a^n \mid n \geq 1\}$, $L_2 = \{b^n a^n b^n \mid n \geq 1\}$. It is easy to show that L_1 and L_2 are not in CFL, using the pumping lemma. But the language $L_1 \cap L_2$ is the empty language, which is a regular language and therefore a CFL as well.

(b) False. Consider the alphabet $\Sigma = \{a, b\}$ and the counterexample $L_1 = \{w \mid w \in \Sigma^*, \#_a(w) = \#_b(w)\}$, $L_2 = \{w \mid w \in \Sigma^*, \#_a(w) \neq \#_b(w)\}$. It is easy to see that $L_1 \cup L_2 = \Sigma^*$ and thus a regular language. However, L_1 and L_2 are not regular languages.

(c) False. Consider the alphabet $\Sigma = \{a, b\}$ and, for each $i \geq 1$, the language $L_i = \{a^i b^i\}$. Each L_i contains exactly one string, therefore each L_i is a finite language. However, $L = \cup_{i=1}^\infty L_i = \{a^n b^n \mid n \geq 1\}$, which is not a context-free language and therefore not a regular language.

(d) True. Let L_1 be an arbitrary language in \mathcal{P}. By definition of \mathcal{P}, there exists some TM M_1 such that $L(M_1) = L_1$ and M_1 processes its input in polynomial time. Let also L_2 be a regular language. It is not difficult to devise a TM M_2 that simulates a DFA for L_2 and that runs in polynomial time. We can now construct a TM M that, given as input a string w, simulates M_1 and M_2 on w in polynomial time. M accepts if both M_1 and M_2 accept, and rejects otherwise. This shows that the intersection language $L_1 \cap L_2$ is in \mathcal{P}. Since L_1 and L_2 were chosen arbitrarily, we have shown that the class \mathcal{P} is closed under intersection with regular languages.

5. [9 points] For a property \mathcal{P} of the RE languages, define $L_\mathcal{P} = \{\text{enc}(M) \mid L(M) \in \mathcal{P}\}$.

(a) Let k be some fixed natural number with $k > 1$. Consider the following properties of the RE languages defined over the alphabet $\Sigma = \{0, 1\}$:

$$\mathcal{P}_{< k} = \{L \mid L \in \text{RE}, |L| < k\};$$

$$\mathcal{P}_{\geq k} = \{L \mid L \in \text{RE}, |L| \geq k\}.$$

Assess whether each of the languages $L_{\mathcal{P}_{< k}}$ and $L_{\mathcal{P}_{\geq k}}$ belongs to the classes REC, RE\textbackslash REC, or else does not belong to RE.

(b) Let $\text{enc}(M_1, M_2)$ be a binary string representing some fixed encoding of TMs M_1, M_2. Consider the following language, where ‘·’ denotes the concatenation operation between languages:

$$L = \{\text{enc}(M_1, M_2) \mid |L(M_1) \cdot L(M_2)| < k\}.$$

Prove that L does not belong to the class RE.

Solution

(a) Language $L_{\mathcal{P}_{\geq k}}$ is not in REC. To prove this statement, we apply Rice’s theorem and show that property $\mathcal{P}_{\geq k}$ is not trivial. First, Σ^* is in RE and has more than k strings. Therefore we have $\Sigma^* \in \mathcal{P}_{\geq k}$ and $\mathcal{P}_{\geq k}$ is not empty. Second, the empty language \emptyset is in RE and has fewer than k strings, since $k \geq 1$. Therefore we have $\emptyset \notin \mathcal{P}_{\geq k}$, and $\mathcal{P}_{\geq k}$ does not contain every RE language. Since $\mathcal{P}_{\geq k}$ is not trivial, we can conclude that $L_{\mathcal{P}_{\geq k}}$ is not in REC, according to Rice’s theorem.

We now prove that $L_{\mathcal{P}_{< k}}$ is in RE. To this end, we specify a nondeterministic TM N such that $L(N) = L_{\mathcal{P}_{< k}}$. Let $\text{enc}(M)$ be the input to N.
• Using nondeterminism, \(N \) guesses \(k \) different strings \(w_i \in \Sigma^* \), \(1 \leq i \leq k \).
• For each \(i = 1, \ldots, k \) in the given order, \(N \) simulates \(M \) on input \(w_i \).
• If any of the \(k \) simulations above does not halt, then \(N \) does not halt as well.
• If all of the \(k \) simulations halt, \(N \) accepts in case every simulation reaches a final state, and rejects otherwise.

It is not difficult to see that \(L(N) = \mathcal{L}_{P \geq k} \). Since nondeterministic TMs are equivalent to TMs, we conclude that \(\mathcal{L}_{P \geq k} \) is in RE.

Consider now the language \(\mathcal{L}_{P < k} \). We observe that \(\mathcal{L}_{P < k} \) is the complement language of \(\mathcal{L}_{P \geq k} \) with respect to \(\Sigma^* \). Since \(\mathcal{L}_{P \geq k} \) is in \(\text{RE} \setminus \text{REC} \), from a well-known property we conclude that \(\mathcal{L}_{P < k} \) cannot be in \(\text{RE} \).

(b) Language \(L \) is not in \(\text{RE} \). To prove this statement, we use the fact that \(\mathcal{L}_{P < k} \) is not in \(\text{RE} \), as shown in (a), and define a reduction \(\mathcal{L}_{P < k} \leq_m L \).

We need to map instances \(\text{enc}(M) \) of \(\mathcal{L}_{P < k} \) into instances \(\text{enc}(M_1, M_2) \) of \(L \). We set \(M_1 = M \) and \(M_2 = M_\varepsilon \), where \(M_\varepsilon \) is any TM that recognizes the language \(\{\varepsilon\} \). The following chain of logical equivalences shows that the construction represents a valid reduction:

\[
\text{enc}(M) \in \mathcal{L}_{P < k} \quad \text{iff} \quad |L(M)| < k \quad \text{(definition of } \mathcal{P}_{< k}) \\
\quad \quad \quad \text{iff} \quad |L(M) \cdot \{\varepsilon\}| < k \quad \text{(definition of concatenation)} \\
\quad \quad \quad \text{iff} \quad |L(M_1) \cdot L(M_\varepsilon)| < k \quad \text{(definition of our reduction)} \\
\quad \quad \quad \text{iff} \quad \text{enc}(M_1, M_2) \in L \quad \text{(definition of } L\).
\]