$$
P=\left\{L \left\lvert\, L \in R E \wedge L=\left\{\begin{array}{c}
w \\
\uparrow
\end{array}\right\}\right.\right\}
$$

$\hat{\tau}_{\text {urbatitnary }}$
L_{p} in in RE?
Solution Consider $\overline{L_{p}}=\{\operatorname{erc}(M) \mid L(M) \notin P\}$

$$
=\{\operatorname{lec}(M) \mid L(M) \neq\{\omega\}\}
$$

\bar{L}_{P} is in RE. To prove this it is sufficient to construct a $T_{M} n^{\prime}$ sit. $L\left(M^{\prime}\right)=\bar{L}_{p}$. Consider the following NON-DETERMINISTIC TM N (of $\exists \mathrm{NTM}$ that recogninie τ_{p} then it would also exist sone TM that recogriite \bar{L}_{p}):

N

