FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

Ing. dell'energia - Ing. meccanica (canale 3)

Docenti: C. Bertolin, A.Larese, P. Magrone

Cognome e Nome: _____

Matricola:

II appello 2021/22

Data: 12/09/2022

Tema: A

• ESERCIZIO 1. Siano $v_1 := (1,1,0), v_2 := (1,0,1)$ vettori in \mathbb{R}^3 e sia $U := \langle v_1, v_2 \rangle$ il sottospazio da essi generato.	
(a) Determinare il sottospazio U^{\perp} complemento ortogonale di $U,$ ed una sua base.	(2 pti)
(b) Si determini un sottospazio W non banale, che sia complementare ad U , ma non ortogonale, ed una sua base.	(2 pti)
(c) Determinare la proiezione del vettore $v := (1, 1, 1)$ su U^{\perp} .	(2 pti)
(d) Applicare il procedimento di Gram-Schmidt ai vettori $\{v_1,v_2,v_1\times v_2\}$ in modo da ottenere una base ortonormale.	(2 pti)
• SOLUZIONI 1.	
(a) U^{\perp} è generato da $v_1 \times v_2 = (1, -1, -1)$.	
(b) Possiamo scegliere, per esempio, W generato da $v_1 + v_1 \times v_2$.	
(c) La proiezione richiesta è $\frac{-1}{3}(1,-1,-1)$.	
(d) Applicando G-S troviamo $e_1 = \frac{1}{\sqrt{2}}(1, 1, 0), e_2 = \frac{1}{\sqrt{6}}(1, -1, 2), e_3 = \frac{1}{\sqrt{3}}(1, -1, -1).$	
• ESERCIZIO 2.	
Sia ϕ l'endomorfismo di \mathbb{R}^3 che soddisfa queste proprietà: $\ker(\phi)$ è il piano di \mathbb{R}^3 avente vettore normale uguale a $v=(1,2,-1)$ e $u=(1,-1,1)$ è un autovettore di ϕ relativo all'autovalore $\lambda=-1$.	
(a) Determinare una base del nucleo e dell'immagine di ϕ .	(2 pti)
(b) Per quale valore di $t \in \mathbb{R}$, il vettore $v = (t, 1, 1)$ appartiene al nucleo di ϕ ?	(2 pti)
(c) Determinare la matrice $M=M_{\mathcal{E}_3}^{\mathcal{E}_3}(\phi)$ associata a ϕ rispetto alla base canonica \mathcal{E}_3 .	(2 pti)
(d) Determinare se ϕ è diagonalizzabile e in caso affermativo, trovare una matrice invertibile P tale che $P^{-1}AP$ sia una matrice diagonale D . Scrivere esplicitamente D in	
tal caso.	(2 pti)

• SOLUZIONI 2.

- (a) $\ker(\phi) = \langle (1,0,1), (-2,1,0) \rangle \in \operatorname{Im}(\phi) = \langle u \rangle$.
- (b) t = -1.

(c)
$$M_{\mathcal{E}_3}^{\mathcal{E}_3}(\phi) = \begin{pmatrix} 1/2 & 1 & -1/2 \\ -1/2 & -1 & 1/2 \\ 1/2 & 1 & -1/2 \end{pmatrix}$$
.

(d)
$$P = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
 e $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

• ESERCIZIO 3.

Nello spazio euclideo tridimensionale si consideri il piano

$$\pi: 3x - y + z = -2$$

- (a) Determinare le equazioni parametriche del piano π ; (2 pti)
- (b) Determinare l'equazione cartesiana della retta r ortogonale a π e passante per P = (0, 2, 0); (2 pti)
- (c) Determinare le proiezioni ortogonali dei punti $Q_1 = (3, 1, 1)$ e $Q_2 = (1, 0, -5)$ su π ; (2 pti)
- (d) Determinare l'equazione cartesiana del piano σ che contiene r e passa per Q_2 . (2 pti)

• SOLUZIONI 3.

- (a) (0,0,-2)+<(1,0,-3),(0,1,1)>
- (b) $r: \begin{cases} x 3z = 0 \\ y + z = 2 \end{cases}$
- (c) $Q_1 \in r$ quindi la sua proiezione è $\overline{Q_1} = r \cap \pi = P$, mentre $Q_2 \in \pi$ e quindi è esso stesso la sua proiezione ortogonale su π , ossia $\overline{Q_2} = Q_2$;
- (d) $\sigma: -7x 16y + 5z + 32 = 0$.

• TEORIA

- (a) Dimostrare che matrici simili hanno lo stesso polinomio caratteristico. (3 pti)
- (b) Verificare che il nucleo di un'applicazione lineare $f:V\to W$ è un sottospazio vettoriale del dominio V. (3 pti)

REGOLE D'ESAME:

- Compilare ogni foglio in ogni sua parte (nome, cognome, matricola, corso di laurea, tema del compito, etc.). Non verranno corretti fogli senza questi dati.
- Consegnare questo foglio e solo i fogli protocollo di BELLA COPIA.
- NON consegnare fogli di brutta copia.
- Verrà valutato solo quanto scritto a penna.
- È possibile **ritirarsi** dalla prova in qualsiasi momento: scrivere, ben visibile, la lettera "R" sul foglio del testo d'esame e sui fogli di bella copia.
- Risaltare in maniera evidente il numero dell'esercizio che si sta svolgendo.
- NON è consentito uscire dall'aula prima di aver consegnato definitivamente il proprio elaborato.
- NON è consentito l'uso di libri, appunti, telefoni, smartwatch e calcolatrici di ogni tipo.
- NON è consentito comunicare con altri candidati durante la prova.