3.3. INTRODUCTION TO HAMILTON–JACOBI EQUATIONS

Let \(h \to 0^+ \) to compute
\[
\frac{x-z}{t} \cdot Du(x, t) + u_t(x, t) \geq L \left(\frac{x-z}{t} \right).
\]
Consequently
\[
u_t(x, t) + H(Du(x, t)) = u_t(x, t) + \max_{q \in \mathbb{R}^n} \{ q \cdot Du(x, t) - L(q) \}
\geq u_t(x, t) + \frac{x-z}{t} \cdot Du(x, t) - L \left(\frac{x-z}{t} \right)
\geq 0.
\]
This inequality and (31) complete the proof. \(\Box \)

We summarize:

THEOREM 6 (Hopf–Lax formula as solution). The function \(u \) defined by the Hopf–Lax formula (21) is Lipschitz continuous, is differentiable a.e. in \(\mathbb{R}^n \times (0, \infty) \), and solves the initial-value problem
\[
\begin{cases}
 u_t + H(Du) = 0 & \text{a.e. in } \mathbb{R}^n \times (0, \infty) \\
 u = g & \text{on } \mathbb{R}^n \times \{ t = 0 \}.
\end{cases}
\]

3.3.3. Weak solutions, uniqueness.

a. Semiconcavity.

In view of Theorem 6 above it may seem reasonable to define a weak solution of the initial-value problem (18) to be a Lipschitz function which agrees with \(g \) on \(\mathbb{R}^n \times \{ t = 0 \} \), and solves the PDE a.e. on \(\mathbb{R}^n \times (0, \infty) \). However, this turns out to be an inadequate definition, as such weak solutions would not in general be unique.

Example. Consider the initial-value problem
\[
\begin{cases}
 u_t + |u|^2 = 0 & \text{in } \mathbb{R} \times (0, \infty) \\
 u = 0 & \text{on } \mathbb{R} \times \{ t = 0 \}.
\end{cases}
\]
One obvious solution is
\[
u_1(x, t) \equiv 0.
\]
However the function
\[
u_2(x, t) := \begin{cases}
 0 & \text{if } |x| \geq t \\
 x - t & \text{if } 0 \leq x \leq t \\
 -x - t & \text{if } -t \leq x \leq 0
\end{cases}
\]
is Lipschitz continuous and also solves the PDE a.e. (everywhere, in fact, except on the lines \(x = \pm t \)). It is easy to see that actually there are infinitely many Lipschitz functions satisfying (33).

This example shows we must presumably require more of a weak solution than merely that it satisfy the PDE a.e. We will look to the Hopf–Lax formula (21) for a further clue as to what is needed to ensure uniqueness. The following lemma demonstrates that \(u \) inherits a kind of "one-sided" second-derivative estimate from the initial function \(g \).

LEMMA 3 (Semiconcavity). Suppose there exists a constant \(C \) such that
\[
g(x+z) - 2g(x) + g(x-z) \leq C|x|^2
\]
for all \(x, z \in \mathbb{R}^n \). Define \(u \) by the Hopf–Lax formula (21). Then
\[
u(x+z, t) - 2u(x, t) + u(x-z, t) \leq C|z|^2
\]
for all \(x, z \in \mathbb{R}^n, t > 0 \).

Remark. We say \(g \) is semiconcave provided (34) holds. It is easy to check (34) is valid if \(g \in C^3 \) and \(\sup_{x \in \mathbb{R}^n} |D^2g| < \infty \). Note that \(g \) is semiconcave if and only if the mapping \(x \mapsto g(x) - \frac{1}{2}|x|^2 \) is concave for some constant \(C \).

Proof. Choose \(y \in \mathbb{R}^n \) so that \(u(x, t) = tL \left(\frac{x-y}{t} \right) + g(y) \). Then, putting \(y+z \) and \(y-z \) in the Hopf–Lax formulas for \(u(x+z, t) \) and \(u(x-z, t) \), we find
\[
u(x+z, t) - 2u(x, t) + u(x-z, t)
\leq \left[tL \left(\frac{x-y}{t} \right) + g(y+z) \right] - 2 \left[tL \left(\frac{x-y}{t} \right) + g(y) \right]
+ \left[tL \left(\frac{x-y}{t} \right) + g(y-z) \right]
= g(y+z) - 2g(y) + g(y-z)
\leq C|z|^2, \text{ by (34)}.\]

As a semiconcavity condition for \(u \) will turn out to be important, we pause to identify some other circumstances under which it is valid. We will no longer assume \(g \) to be semiconcave, but will suppose the Hamiltonian \(H \) to be uniformly convex.
3.3. INTRODUCTION TO HAMILTON–JACobi EQUATIONS

DEFINITION. A C^2 convex function $H : \mathbb{R}^n \to \mathbb{R}$ is called uniformly convex (with constant $\theta > 0$) if

$$\sum_{i,j=1}^n H_{ij}(x) \xi_i \xi_j \geq \theta |\xi|^2 \quad \text{for all } p, \xi \in \mathbb{R}^n. \quad (35)$$

We now prove that even if g is not semiconcave, the uniform convexity of H forces u to become semiconcave for times $t > 0$: this is a kind of mild regularizing effect for the Hopf–Lax solution of the initial-value problem (18).

LEMMA 4 (Semiconcavity again). Suppose that H is uniformly convex (with constant θ) and u is defined by the Hopf–Lax formula (21). Then

$$u(x + z, t) - 2u(x, t) + u(x - z, t) \leq \frac{1}{\theta t} |z|^2$$

for all $x, z \in \mathbb{R}^n$, $t > 0$.

Proof. 1. We note first using Taylor's formula that (35) implies

$$H \left(\frac{p_1 + p_2}{2} \right) \leq \frac{1}{2} H(p_1) + \frac{1}{2} H(p_2) - \frac{\theta}{8} |p_1 - p_2|^2. \quad (36)$$

Next we claim that for the Lagrangian L we have the estimate

$$\frac{1}{2} L(q_1) + \frac{1}{2} L(q_2) \leq L \left(\frac{q_1 + q_2}{2} \right) + \frac{1}{8 \theta} |q_1 - q_2|^2 \quad (37)$$

for all $q_1, q_2 \in \mathbb{R}^n$. Verification is left as an exercise.

2. Now choose y so that $u(x, t) = tL \left(\frac{x - y}{t} \right) + g(y)$. Then using the same value of g in the Hopf–Lax formulas for $u(x + z, t)$ and $u(x - z, t)$, we calculate

$$u(x + z, t) - 2u(x, t) + u(x - z, t)$$

$$\leq tL \left(\frac{x + z - y}{t} \right) + g(y) - 2tL \left(\frac{x - y}{t} \right) + g(y)$$

$$+ \frac{1}{t} L \left(\frac{x - z + y}{t} \right) + g(y)$$

$$= 2t \left[\frac{1}{2} L \left(\frac{x + z - y}{t} \right) + \frac{1}{2} L \left(\frac{x - z + y}{t} \right) - L \left(\frac{x - y}{t} \right) \right]$$

$$\leq 2 \frac{1}{8 \theta} \frac{1}{t} |z|^2 \leq \frac{1}{8 \theta} |z|^2,$$

the next-to-last inequality following from (37). \Box

3. NONLINEAR FIRST-ORDER PDE

b. Weak solutions, uniqueness.

In this section we show that semiconcavity conditions of the sorts discovered for the Hopf–Lax solution u in Lemmas 3 and 4 can be utilized as uniqueness criteria.

DEFINITION. We say that a Lipschitz continuous function $u : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ is a weak solution of the initial-value problem:

$$\begin{cases}
 u_t + H(Du) = 0 & \text{in } \mathbb{R}^n \times (0, \infty), \\
 u = g & \text{on } \mathbb{R}^n \times \{ t = 0 \}
\end{cases} \quad (38)$$

provided

(a) $u(x, 0) = g(x)$ \quad $(x \in \mathbb{R}^n)$,

(b) $u_t(x, t) + H(Du(x, t)) = 0$ \quad for a.e. \quad $(x, t) \in \mathbb{R}^n \times (0, \infty)$, and

(c) $u(x + z, t) - 2u(x, t) + u(x - z, t) \leq C \left(1 + \frac{1}{t} \right) |z|^2$

for some constant $C \geq 0$ and all $x, z \in \mathbb{R}^n$, $t > 0$.

Next we prove that a weak solution of (38) is unique, the key point being that this uniqueness assertion follows from the inequality condition (c).

THEOREM 7 (Uniqueness of weak solutions). Assume H is C^2 and satisfies (19), and g satisfies (20). Then there exists at most one weak solution of the initial-value problem (38).

Proof. 1. Suppose that u and \tilde{u} are two weak solutions of (38) and write $w = u - \tilde{u}$.

Observe now at any point (y, s) where both u and \tilde{u} are differentiable and solve our PDE, we have

$$w_t(y, s) = u_t(y, s) - \tilde{u}_t(y, s)$$

$$= -H(Du(y, s)) + H(D\tilde{u}(y, s))$$

$$= - \int_0^1 \frac{d}{dr} H(rDu(y, s) + (1 - r)D\tilde{u}(y, s)) \, dr$$

$$= - \int_0^1 \frac{d}{dr} \left(rDu(y, s) + (1 - r)D\tilde{u}(y, s) \right) \cdot (Du(y, s) - D\tilde{u}(y, s)) \, dr$$

$$= - \frac{1}{2} \left(Du(y, s) - D\tilde{u}(y, s) \right) \cdot (Du(y, s) - D\tilde{u}(y, s))$$

Consequently

$$\frac{1}{2} w_t = Du(y, s) \cdot D\tilde{u}(y, s). \quad (39)$$

Conclude that

$$w_t + b \cdot Du = 0 \quad \text{a.e.}$$

Omit on first reading.
3.3. INTRODUCTION TO HAMILTON–JACOBI EQUATIONS

2. Write \(v := \varphi(u) \geq 0 \), where \(\varphi : \mathbb{R} \to (0, \infty) \) is a smooth function to be selected later. We multiply (39) by \(\varphi'(u) \) to discover

\[v_t + b \cdot Dv = 0 \quad \text{a.e.} \tag{40} \]

3. Now choose \(\varepsilon > 0 \) and define \(u^\varepsilon := \eta_\varepsilon * v, \bar{u}^\varepsilon := \eta_\varepsilon * \bar{u} \), where \(\eta_\varepsilon \) is the standard mollifier in the \(x \) and \(t \) variables. Then according to \S C.4

\[|Du^\varepsilon| \leq \text{Lip}(u), \quad |D\bar{u}^\varepsilon| \leq \text{Lip}(\bar{u}), \tag{41} \]

and

\[D(u^\varepsilon) \to Du, \quad D\bar{u}^\varepsilon \to D\bar{u} \quad \text{a.e., as} \ \varepsilon \to 0. \tag{42} \]

Furthermore inequality (c) in the definition of weak solution implies

\[D^2u^\varepsilon, D^2\bar{u}^\varepsilon \leq C \left(1 + \frac{1}{\varepsilon} \right) I \tag{43} \]

for an appropriate constant \(C \) and all \(\varepsilon > 0, \, y \in \mathbb{R}^n, \, \varepsilon > 2 \varepsilon \). Verification is left as an exercise.

4. Write

\[b_\varepsilon(y, \varepsilon) := \int_0^1 DH(rDu^\varepsilon(y, \varepsilon) + (1 - r)D\bar{u}^\varepsilon(y, \varepsilon)) \, dr. \tag{44} \]

Then (40) becomes

\[v_t + b_\varepsilon \cdot Dv = (b_\varepsilon - b) \cdot Dv \quad \text{a.e.}; \tag{45} \]

hence

\[v_t + \text{div}(eb_\varepsilon) = (\text{div} b_\varepsilon)v + (b_\varepsilon - b) \cdot Dv \quad \text{a.e.} \]

5. Now

\[\text{div} b_\varepsilon = \int_0^1 \sum_{k,l=1}^n H_{kl}(rDu^\varepsilon + (1 - r)D\bar{u}^\varepsilon)(ru^\varepsilon_{t_kx_l} + (1 - r)\bar{u}^\varepsilon_{t_kx_l}) \, dr \leq C \left(1 + \frac{1}{\varepsilon} \right) \tag{46} \]

for some constant \(C \), in view of (41), (43). Here we note that \(H \) convex implies \(D^2H \geq 0 \).

3. NONLINEAR FIRST-ORDER PDE

6. Fix \(x_0 \in \mathbb{R}^n, \, t_0 > 0 \), and set

\[R := \max\{|DH(p)| \mid |p| \leq \max(\text{Lip}(u), \text{Lip}(\bar{u}))\}. \tag{47} \]

Define also the cone

\[C := \{(x, t) \mid 0 \leq t \leq t_0, |x - x_0| \leq R(t_0 - t)\}. \]

Next write

\[\varepsilon(t) = \int_{B(x_0,R(t_0-t))} v(x, t) \, dx \]

and compute for a.e. \(t > 0 \):

\[\dot{\varepsilon}(t) = \int_{B(x_0,R(t_0-t))} v_t \, dx - R \int_{B(x_0,R(t_0-t))} v \, dS \]

\[= \int_{B(x_0,R(t_0-t))} - \text{div}(eb_\varepsilon) + (\text{div} b_\varepsilon)v + (b_\varepsilon - b) \cdot Dv \, dx \]

\[- R \int_{B(x_0,R(t_0-t))} v \, dS \quad \text{by (45)} \]

\[= \int_{B(x_0,R(t_0-t))} v(b_\varepsilon \cdot v + R) \, dS \]

\[+ \int_{B(x_0,R(t_0-t))} (\text{div} b_\varepsilon)v + (b_\varepsilon - b) \cdot Dv \, dx \]

\[\leq C \int_{B(x_0,R(t_0-t))} (\text{div} b_\varepsilon)v + (b_\varepsilon - b) \cdot Dv \, dx \quad \text{by (41), (44)} \]

\[\leq C \left(1 + \frac{1}{\varepsilon} \right) \varepsilon(t) + \int_{B(x_0,R(t_0-t))} (b_\varepsilon - b) \cdot Dv \, dx \]

by (46). The last term on the right hand side goes to zero as \(\varepsilon \to 0 \), for a.e. \(t_0 > 0 \), according to (41), (42) and the Dominated Convergence Theorem. Thus

\[\dot{\varepsilon}(t) \leq C \left(1 + \frac{1}{\varepsilon} \right) \varepsilon(t) \quad \text{for a.e.} \ 0 < t < t_0. \tag{48} \]

7. Fix \(0 < \varepsilon < r < t \) and choose the function \(\varphi(z) \) to equal zero if

\[|z| \leq \varepsilon |\text{Lip}(u, \text{Lip}(\bar{u})| \tag{49} \]

and to be positive otherwise. Since \(u = \bar{u} \) on \(\mathbb{R}^n \times \{t = 0\} \),

\[v = \phi(u) = \phi(u - \bar{u}) = 0 \quad \text{at} \ (t = 0). \tag{50} \]
3.3 INTRODUCTION TO HAMILTON-JACOBI EQUATIONS

Thus \(c(\varepsilon) = 0 \). Consequently Gronwall's inequality (see §B.2) and (48) imply

\[
e(\tau) \leq c(\varepsilon)e^{\int_0^\tau c(t) \, dt} = 0.
\]

Hence

\[
|u - \bar{u}| \leq c[\text{Lip}(u) + \text{Lip}(\bar{u})] \quad \text{on} \quad B(x_0, R(t_0 - \tau)).
\]

This inequality is valid for all \(\varepsilon > 0 \), and so \(u = \bar{u} \) in \(B(x_0, R(t_0 - \tau)) \). Therefore, in particular, \(u(x_0, t_0) = \bar{u}(x_0, t_0) \). \(\square \)

In light of Lemmas 3, 4, and Theorem 7, we have

THEOREM 8 (Hopf-Lax formula as weak solution). Suppose \(H \) is \(C^2 \) and satisfies (19), and \(g \) satisfies (20). If either \(g \) is semiconcave or \(H \) is uniformly convex, then

\[
u(x, t) = \min_{y \in \mathbb{R}^n} \left\{ tL \left(\frac{x - y}{t} \right) + g(y) \right\}
\]

is the unique weak solution of the initial-value problem (38) for the Hamilton-Jacobi equation.

Examples. (i) Consider the initial-value problem:

\[
\begin{cases}
u_t + \frac{1}{2} |Du|^2 = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\
u = |x| & \text{on } \mathbb{R}^n \times \{t = 0\}.
\end{cases}
\]

Here \(H(p) = \frac{1}{2} |p|^2 \) and so \(L(q) = \frac{1}{2} |q|^2 \). The Hopf-Lax formula for the unique, weak solution of (49) is

\[
u(x, t) = \min_{y \in \mathbb{R}^n} \left\{ |x - y|^2 \right\}.
\]

Assume \(|x| > t \). Then

\[
D_y \left(\frac{|x - y|^2}{2t} + |y| \right) = \frac{y - x}{t} + \frac{y}{|y|} \quad (y \neq 0);
\]

and this expression equals zero if \(x = y + \frac{t}{|y|} y \). Thus \(\nu(x, t) = |x| - \frac{t}{2} \) if \(|x| > t \). If \(|x| \leq t \), the minimum in (50) is attained at \(y = 0 \). Consequently

\[
u(x, t) = \begin{cases}
|x| - t/2 & \text{if } |x| \geq t \\
|y| & \text{if } |x| \leq t.
\end{cases}
\]

3.3 INTRODUCTION TO CONSERVATION LAWS

In this section we investigate the initial-value problem for scalar conservation laws in one space dimension:

\[
\begin{cases}
u_t + F(u)_x = 0 & \text{in } \mathbb{R} \times (0, \infty) \\
u = g & \text{on } \mathbb{R} \times \{t = 0\}.
\end{cases}
\]

Here \(F : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \) are given and \(u : \mathbb{R} \times [0, \infty) \to \mathbb{R} \) is the unknown, \(u = u(x, t) \). As noted in §3.2, the method of characteristics demonstrates that there does not in general exist a smooth solution of (1), existing for all times \(t > 0 \). By analogy with the developments in §3.3.5, we therefore look for some sort of weak or generalized solution.